2025-01383. Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to U.S. Coast Guard Construction in Florence, Oregon  

  • Table 1—Proposed Pile Driving

    Method Pile size and type Activity duration Number of piles Estimated days of work
    Impact install 24-in 45 blows per minute for 27 minutes (1,230 total blows) 79 28
    14 in H-pile 45 blows per minute for 13 minutes (570 total blows)
    Vibratory install 24-in 60 minutes 79
    Vibratory removal 24-in timber 15 minutes 71 20

    The USCG has proposed in its description of the project that pile driving would occur only during daylight hours (no sooner than 30 minutes after sunrise through no later than 30 minutes before sunset). In addition, ODFW requires all in-water construction be limited to the months of November through February to minimize impacts to ESA listed fish species.

    Proposed mitigation, monitoring, and reporting measures are described in detail later in this document (please see Proposed Mitigation and Proposed Monitoring and Reporting).

    Description of Marine Mammals in the Area of Specified Activities

    Sections 3 and 4 of the application summarize available information regarding status and trends, distribution and habitat preferences, and behavior and life history of the potentially affected species. NMFS fully considered all of this information, and we refer the reader to these descriptions, instead of reprinting the information. Additional information regarding population trends and threats may be found in NMFS' Stock Assessment Reports (SARs; https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-stock-assessments) and more general information about these species ( e.g., physical and behavioral descriptions) may be found on NMFS' website ( https://www.fisheries.noaa.gov/​find-species).

    Table 2 lists all species or stocks for which take is expected and proposed to be authorized for this activity and summarizes information related to the population or stock, including regulatory status under the MMPA and Endangered Species Act (ESA) and potential biological removal (PBR), where known. PBR is defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population (as described in NMFS' SARs). While no serious injury or mortality is anticipated or proposed to be authorized here, PBR and annual serious injury and mortality (M/SI) from anthropogenic sources are included here as gross indicators of the status of the species or stocks and other threats.

    Marine mammal abundance estimates presented in this document represent the total number of individuals that make up a given stock or the total number estimated within a particular study or survey area. NMFS' stock abundance estimates for most species represent the total estimate of individuals within the geographic area, if known, that comprises that stock. For some species, this geographic area may extend beyond U.S. waters. All managed stocks in this region are assessed in NMFS' U.S. Pacific Marine Mammal SARs. All values presented in table 2 are the most recent available at the time of publication (including from the draft 2023 SARs) and are available online at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-stock-assessments.

    Table 2—Marine Mammal Species 1 Likely To Occur Near the Project Area That May Be Taken by USCG's Activities

    Common name Scientific name Stock ESA/ MMPA status; strategic (Y/N) 2 Stock abundance (CV, N min , most recent abundance survey) 3 PBR Annual M/SI 4
    Odontoceti (toothed whales, dolphins, and porpoises)
    Family Phocoenidae (porpoises):
    Harbor Porpoise Phocoena phocoena Central Oregon 5 -, -, N 7,492 (0.421, 5,332, 2022) 53 0
    Order Carnivora—Pinnipedia
    Family Otariidae (eared seals and sea lions):
    CA Sea Lion Zalophus californianus U.S. -, -, N 257,606 (N/A, 233,515, 2014) 14,011 >321
    ( print page 7086)
    Steller Sea Lion 6 Eumetopias jubatus Eastern -, -, N 36,308 (N/A, 36,308, 2022) 2,178 93.2
    Family Phocidae (earless seals):
    Harbor Seal Phoca vitulina OR/WA Coastal -, -, N UNK (UNK, UNK, 1999) UND 10.6
    1  Information on the classification of marine mammal species can be found on the web page for The Society for Marine Mammalogy's Committee on Taxonomy (https://marinemammalscience.org/​science-and-publications/​list-marine-mammal-species-subspecies/​; Committee on Taxonomy (2022)).
    2  Endangered Species Act (ESA) status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed under the ESA or designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality exceeds PBR or which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed under the ESA is automatically designated under the MMPA as depleted and as a strategic stock.
    3  NMFS marine mammal stock assessment reports online at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-stock-assessment-reports-region. CV is coefficient of variation; N min is the minimum estimate of stock abundance.
    4  These values, found in NMFS's SARs, represent annual levels of human-caused mortality plus serious injury from all sources combined ( e.g., commercial fisheries, ship strike). Annual M/SI often cannot be determined precisely and is in some cases presented as a minimum value or range. A CV associated with estimated mortality due to commercial fisheries is presented in some cases.
    5  New stock in 2023 SARs.
    6  Nest is best estimate of counts, which have not been corrected for animals at sea during abundance surveys. Estimates provided are for the U.S. only.

    As indicated above, all four species (with four managed stocks) in table 2 temporally and spatially co-occur with the activity to the degree that take is reasonably likely to occur. All species that could potentially occur in the proposed survey areas are included in section 3 of the IHA application on page 12. While killer whales ( Orcinus orca), humpback whales ( Megaptera novaeangliae), and gray whales ( Eschrichtius robustus) have been sighted off the Oregon coast, the USCG's project is located in the Siuslaw River where these species do not occur. Therefor the temporal and/or spatial occurrence of these species is such that take is not expected to occur, and they are not discussed further beyond the explanation provided here and in the USCG's application. For more details on the species that are likely to occur near the project area and may be taken by USCG's activities, see Sections 3 and 4 of USCG's IHA application, the SARs, and NMFS' website.

    Marine Mammal Hearing

    Hearing is the most important sensory modality for marine mammals underwater, and exposure to anthropogenic sound can have deleterious effects. To appropriately assess the potential effects of exposure to sound, it is necessary to understand the frequency ranges marine mammals are able to hear. Not all marine mammal species have equal hearing capabilities ( e.g., Richardson et al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect this, Southall et al. (2007, 2019) recommended that marine mammals be divided into hearing groups based on directly measured (behavioral or auditory evoked potential techniques) or estimated hearing ranges (behavioral response data, anatomical modeling, etc.). Generalized hearing ranges were chosen based on the ~65 decibel (dB) threshold from composite audiograms, previous analyses in NMFS (2018), and/or data from Southall et al. (2007) and Southall et al. (2019). We note that the names of two hearing groups and the generalized hearing ranges of all marine mammal hearing groups have been recently updated (NMFS 2024) as reflected below in in table 3.

    Table 3—Marine Mammal Hearing Groups

    [NMFS, 2024]

    Hearing group Generalized hearing range *
    Low-frequency (LF) cetaceans (baleen whales) 7 Hz to 36 kHz.
    High-frequency (HF) cetaceans (dolphins, toothed whales, beaked whales, bottlenose whales) 150 Hz to 160 kHz.
    Very High-frequency (VHF) cetaceans (true porpoises, Kogia, river dolphins, Cephalorhynchid, Lagenorhynchus cruciger & L. australis) 200 Hz to 165 kHz.
    Phocid pinnipeds (PW) (underwater) (true seals) 40 Hz to 90 kHz.
    Otariid pinnipeds (OW) (underwater) (sea lions and fur seals) 60 Hz to 68 kHz.
    * Represents the generalized hearing range for the entire group as a composite ( i.e., all species within the group), where individual species' hearing ranges may not be as broad. Generalized hearing range chosen based on ~65 dB threshold from composite audiogram, previous analysis in NMFS 2018, and/or data from Southall et al. 2007; Southall et al. 2019. Additionally, animals are able to detect very loud sounds above and below that “generalized” hearing range.

    For more detail concerning these groups and associated frequency ranges, please see NMFS (2024) for a review of available information.

    Potential Effects of Specified Activities on Marine Mammals and Their Habitat

    This section provides a discussion of the ways in which components of the specified activity may impact marine mammals and their habitat. The Estimated Take of Marine Mammals section later in this document includes a quantitative analysis of the number of individuals that are expected to be taken by this activity. The Negligible Impact Analysis and Determination section considers the content of this section, the Estimated Take of Marine Mammals section, and the Proposed Mitigation section, to draw conclusions regarding ( print page 7087) the likely impacts of these activities on the reproductive success or survivorship of individuals and whether those impacts are reasonably expected to, or reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival.

    Acoustic effects on marine mammals during the specified activity can occur from impact and vibratory pile driving. The effects of underwater noise from USCG's proposed activities have the potential to result in Level A or Level B harassment of marine mammals in the action area.

    Description of Sound Sources

    The marine soundscape is comprised of both ambient and anthropogenic sounds. Ambient sound is defined as the all-encompassing sound in a given place and is usually a composite of sound from many sources both near and far. The sound level of an area is defined by the total acoustical energy being generated by known and unknown sources. These sources may include physical ( e.g., waves, wind, precipitation, earthquakes, ice, atmospheric sound), biological ( e.g., sounds produced by marine mammals, fish, and invertebrates), and anthropogenic sound ( e.g., vessels, dredging, aircraft, construction).

    The sum of the various natural and anthropogenic sound sources at any given location and time—which comprise “ambient” or “background” sound—depends not only on the source levels (as determined by current weather conditions and levels of biological and shipping activity) but also on the ability of sound to propagate through the environment. In turn, sound propagation is dependent on the spatially and temporally varying properties of the water column and sea floor, and is frequency-dependent. As a result of the dependence on a large number of varying factors, ambient sound levels can be expected to vary widely over both coarse and fine spatial and temporal scales. Sound levels at a given frequency and location can vary by 10-20 dB from day to day (Richardson et al., 1995). The result is that, depending on the source type and its intensity, sound from the specified activity may be a negligible addition to the local environment or could form a distinctive signal that may affect marine mammals.

    In-water construction activities associated with the project would include vibratory pile removal, and impact and vibratory pile driving. The sounds produced by these activities fall into one of two general sound types: impulsive and non-impulsive. Impulsive sounds ( e.g., explosions, gunshots, sonic booms, impact pile driving) are typically transient, brief (less than 1 second), broadband, and consist of high peak sound pressure with rapid rise time and rapid decay (ANSI, 1986; NIOSH, 1998; ANSI, 2005; NMFS, 2018a). Non-impulsive sounds ( e.g., aircraft, machinery operations such as drilling or dredging, vibratory pile driving, and active sonar systems) can be broadband, narrowband or tonal, brief or prolonged (continuous or intermittent), and typically do not have the high peak sound pressure with raid rise/decay time that impulsive sounds do (ANSI, 1995; NIOSH, 1998; NMFS, 2018a). The distinction between these two sound types is important because they have differing potential to cause physical effects, particularly with regard to hearing ( e.g., Ward 1997 in Southall et al., 2007).

    USCG proposes to use vibratory hammers to remove timber piles and impact and vibratory pile driving to install new steel pipe piles and/or H-piles associated with the Station Siuslaw River project. Impact hammers operate by repeatedly dropping a heavy piston onto a pile to drive the pile into the substrate. Sound generated by impact hammers is characterized by rapid rise times and high peak levels, a potentially injurious combination (Hastings and Popper, 2005). Vibratory hammers install piles by vibrating them and allowing the weight of the hammer to push them into the sediment. Vibratory hammers produce significantly less sound than impact hammers. Peak sound pressure levels (SPLs) may be 180 dB or greater, but are generally 10 to 20 dB lower than SPLs generated during impact pile driving of the same-sized pile (Oestman et al., 2009). Rise time is slower, reducing the probability and severity of injury, and sound energy is distributed over a greater amount of time (Nedwell and Edwards, 2002; Carlson et al., 2005).

    The likely or possible impacts of USCG's proposed activity on marine mammals could involve both non-acoustic and acoustic stressors. Potential non-acoustic stressors could result from the physical presence of equipment and personnel; however, any impacts to marine mammals are expected to be primarily acoustic in nature. Acoustic stressors include effects of heavy equipment operation during pile installation and removal.

    Acoustic Effects

    The introduction of anthropogenic noise into the aquatic environment from pile driving and removal is the means by which marine mammals may be harassed from USCG's specified activity. In general, animals exposed to natural or anthropogenic sound may experience behavioral, physiological, and/or physical effects, ranging in magnitude from none to severe (Southall et al., 2007, 2019). In general, exposure to pile driving noise has the potential to result in behavioral reactions ( e.g., avoidance, temporary cessation of foraging and vocalizing, changes in dive behavior) and, in limited cases, an auditory threshold shift (TS). Exposure to anthropogenic noise can also lead to non-observable physiological responses such an increase in stress hormones. Additional noise in a marine mammal's habitat can mask acoustic cues used by marine mammals to carry out daily functions such as communication and predator and prey detection. The effects of pile driving noise on marine mammals are dependent on several factors, including, but not limited to, sound type ( e.g., impulsive vs. non-impulsive), the species, age and sex class ( e.g., adult male vs. mom with calf), duration of exposure, the distance between the pile and the animal, received levels, behavior at time of exposure, and previous history with exposure (Wartzok et al., 2004; Southall et al., 2007). Here we discuss physical auditory effects (TSs) followed by behavioral effects and potential impacts on habitat.

    NMFS defines a noise-induced TS as a change, usually an increase, in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018, 2024). The amount of TS is customarily expressed in dB. A TS can be permanent or temporary. As described in NMFS (2018, 2024), there are numerous factors to consider when examining the consequence of TS, including, but not limited to, the signal temporal pattern ( e.g., impulsive or non-impulsive), likelihood an individual would be exposed for a long enough duration or to a high enough level to induce a TS, the magnitude of the TS, time to recovery (seconds to minutes or hours to days), the frequency range of the exposure ( i.e., spectral content), the hearing and vocalization frequency range of the exposed species relative to the signal's frequency spectrum ( i.e., how animal uses sound within the frequency band of the signal; e.g., Kastelein et al., 2014), and the overlap between the animal and the source ( e.g., spatial, temporal, and spectral).

    Auditory Injury and Permanent Threshold Shift (PTS) —NMFS defines auditory injury as “damage to the inner ear that can result in destruction of ( print page 7088) tissue . . . which may or may not result in PTS” (NMFS, 2024). NMFS defines PTS as a permanent, irreversible increase in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2024). PTS does not generally affect more than a limited frequency range, and an animal that has incurred PTS has incurred some level of hearing loss at the relevant frequencies; typically, animals with PTS are not functionally deaf (Au and Hastings, 2008; Finneran, 2016). Available data from humans and other terrestrial mammals indicate that a 40-dB threshold shift approximates PTS onset (see Ward et al., 1958, 1959, 1960; Kryter et al., 1966; Miller, 1974; Ahroon et al., 1996; Henderson et al., 2008). PTS levels for marine mammals are estimates, as with the exception of a single study unintentionally inducing PTS in a harbor seal (Kastak et al., 2008), there are no empirical data measuring PTS in marine mammals largely due to the fact that, for various ethical reasons, experiments involving anthropogenic noise exposure at levels inducing PTS are not typically pursued or authorized (NMFS, 2018).

    Temporary Threshold Shift (TTS) —TTS is a temporary, reversible increase in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018). Based on data from cetacean TTS measurements (Southall et al., 2007), a TTS of 6 dB is considered the minimum TS clearly larger than any day-to-day or session-to-session variation in a subject's normal hearing ability (Schlundt et al., 2000; Finneran et al., 2000, 2002). As described in Finneran (2015), marine mammal studies have shown the amount of TTS increases with cumulative sound exposure level (SELcum) in an accelerating fashion: At low exposures with lower SELcum, the amount of TTS is typically small and the growth curves have shallow slopes. At exposures with higher SELcum, the growth curves become steeper and approach linear relationships with the noise SEL.

    Depending on the degree (elevation of threshold in dB), duration ( i.e., recovery time), and frequency range of TTS, and the context in which it is experienced, TTS can have effects on marine mammals ranging from discountable to serious (similar to those discussed in Masking, below). For example, a marine mammal may be able to readily compensate for a brief, relatively small amount of TTS in a non-critical frequency range that takes place during a time when the animal is traveling through the open ocean, where ambient noise is lower and there are not as many competing sounds present. Alternatively, a larger amount and longer duration of TTS sustained during time when communication is critical for successful mother/calf interactions could have more serious impacts. We note that reduced hearing sensitivity as a simple function of aging has been observed in marine mammals, as well as humans and other taxa (Southall et al., 2007), so we can infer that strategies exist for coping with this condition to some degree, though likely not without cost.

    Many studies have examined noise-induced hearing loss in marine mammals (see Finneran (2015) and Southall et al. (2019) for summaries). TTS is the mildest form of hearing impairment that can occur during exposure to sound (Kryter, 2013). While experiencing TTS, the hearing threshold rises, and a sound must be at a higher level in order to be heard. In terrestrial and marine mammals, TTS can last from minutes or hours to days (in cases of strong TTS). In many cases, hearing sensitivity recovers rapidly after exposure to the sound ends. For cetaceans, published data on the onset of TTS are limited to captive bottlenose dolphin ( Tursiops truncatus), beluga whale, harbor porpoise, and Yangtze finless porpoise ( Neophocoena asiaeorientalis) (Southall et al., 2019). For pinnipeds in water, measurements of TTS are limited to harbor seals, elephant seals ( Mirounga angustirostris), bearded seals ( Erignathus barbatus) and California sea lions ( Zalophus californianus) (Kastak et al., 1999, 2007; Kastelein et al., 2019b, 2019c, 2021, 2022a, 2022b; Reichmuth et al., 2019; Sills et al., 2020). TTS was not observed in spotted ( Phoca largha) and ringed ( Pusa hispida) seals exposed to single airgun impulse sounds at levels matching previous predictions of TTS onset (Reichmuth et al., 2016). These studies examine hearing thresholds measured in marine mammals before and after exposure to intense or long-duration sound exposures. The difference between the pre-exposure and post-exposure thresholds can be used to determine the amount of threshold shift at various post-exposure times.

    The amount and onset of TTS depends on the exposure frequency. Sounds at low frequencies, well below the region of best sensitivity for a species or hearing group, are less hazardous than those at higher frequencies, near the region of best sensitivity (Finneran and Schlundt, 2013). At low frequencies, onset-TTS exposure levels are higher compared to those in the region of best sensitivity ( i.e., a low frequency noise would need to be louder to cause TTS onset when TTS exposure level is higher), as shown for harbor porpoises and harbor seals (Kastelein et al., 2019a, 2019c). Note that in general, harbor seals and harbor porpoises have a lower TTS onset than other measured pinniped or cetacean species (Finneran, 2015). In addition, TTS can accumulate across multiple exposures, but the resulting TTS will be less than the TTS from a single, continuous exposure with the same SEL (Mooney et al., 2009; Finneran et al., 2010; Kastelein et al., 2014, 2015). This means that TTS predictions based on the total, cumulative SEL will overestimate the amount of TTS from intermittent exposures, such as sonars and impulsive sources. Nachtigall et al. (2018) describe measurements of hearing sensitivity of multiple odontocete species (bottlenose dolphin, harbor porpoise, beluga, and false killer whale ( Pseudorca crassidens)) when a relatively loud sound was preceded by a warning sound. These captive animals were shown to reduce hearing sensitivity when warned of an impending intense sound. Based on these experimental observations of captive animals, the authors suggest that wild animals may dampen their hearing during prolonged exposures or if conditioned to anticipate intense sounds. Another study showed that echolocating animals (including odontocetes) might have anatomical specializations that might allow for conditioned hearing reduction and filtering of low-frequency ambient noise, including increased stiffness and control of middle ear structures and placement of inner ear structures (Ketten et al., 2021). Data available on noise-induced hearing loss for mysticetes are currently lacking (NMFS, 2018). Additionally, the existing marine mammal TTS data come from a limited number of individuals within these species.

    Relationships between TTS and PTS thresholds have not been studied in marine mammals, and there is no PTS data for cetaceans, but such relationships are assumed to be similar to those in humans and other terrestrial mammals. PTS typically occurs at exposure levels at least several decibels above that inducing mild TTS ( e.g., a 40-dB threshold shift approximates PTS onset (Kryter et al., 1966; Miller, 1974), while a 6-dB threshold shift approximates TTS onset (Southall et al., 2007, 2019). Based on data from ( print page 7089) terrestrial mammals, a precautionary assumption is that the PTS thresholds for impulsive sounds (such as impact pile driving pulses as received close to the source) are at least 6 dB higher than the TTS threshold on a peak-pressure basis and PTS cumulative sound exposure level thresholds are 15 to 20 dB higher than TTS cumulative sound exposure level thresholds (Southall et al., 2007, 2019). Given the higher level of sound or longer exposure duration necessary to cause PTS as compared with TTS, it is considerably less likely that PTS could occur.

    Activities for this project include impact and vibratory pile driving and vibratory removal. There would likely be pauses in activities producing the sound during each day. Given these pauses and the fact that many marine mammals are likely moving through the project areas and not remaining for extended periods of time, the potential for TS declines.

    Behavioral Harassment —Exposure to noise from pile driving also has the potential to behaviorally disturb marine mammals. Generally speaking, NMFS considers a behavioral disturbance that rises to the level of harassment under the MMPA a non-minor response—in other words, not every response qualifies as behavioral disturbance, and for responses that do, those of a higher level, or accrued across a longer duration, have the potential to affect foraging, reproduction, or survival. Behavioral disturbance may include a variety of effects, including subtle changes in behavior ( e.g., minor or brief avoidance of an area or changes in vocalizations), more conspicuous changes in similar behavioral activities, and more sustained and/or potentially severe reactions, such as displacement from or abandonment of high-quality habitat. Behavioral responses may include changing durations of surfacing and dives, changing direction and/or speed; reducing/increasing vocal activities; changing/cessation of certain behavioral activities (such as socializing or feeding); eliciting a visible startle response or aggressive behavior (such as tail/fin slapping or jaw clapping); avoidance of areas where sound sources are located. Pinnipeds may increase their haul out time, possibly to avoid in-water disturbance (Thorson and Reyff, 2006).

    Behavioral responses to sound are highly variable and context-specific and any reactions depend on numerous intrinsic and extrinsic factors ( e.g., species, state of maturity, experience, current activity, reproductive state, auditory sensitivity, time of day), as well as the interplay between factors ( e.g., Richardson et al., 1995; Wartzok et al., 2004; Southall et al., 2007, 2019; Weilgart, 2007; Archer et al., 2010). Behavioral reactions can vary not only among individuals but also within an individual, depending on previous experience with a sound source, context, and numerous other factors (Ellison et al., 2012), and can vary depending on characteristics associated with the sound source ( e.g., whether it is moving or stationary, number of sources, distance from the source). In general, pinnipeds seem more tolerant of, or at least habituate more quickly to, potentially disturbing underwater sound than do cetaceans, and generally seem to be less responsive to exposure to industrial sound than most cetaceans. Please see Appendices B and C of Southall et al. (2007) and Gomez et al. (2016) for reviews of studies involving marine mammal behavioral responses to sound.

    Habituation can occur when an animal's response to a stimulus wanes with repeated exposure, usually in the absence of unpleasant associated events (Wartzok et al., 2004). Animals are most likely to habituate to sounds that are predictable and unvarying. It is important to note that habituation is appropriately considered as a “progressive reduction in response to stimuli that are perceived as neither aversive nor beneficial,” rather than as, more generally, moderation in response to human disturbance (Bejder et al., 2009). The opposite process is sensitization, when an unpleasant experience leads to subsequent responses, often in the form of avoidance, at a lower level of exposure.

    As noted above, behavioral state may affect the type of response. For example, animals that are resting may show greater behavioral change in response to disturbing sound levels than animals that are highly motivated to remain in an area for feeding (Richardson et al., 1995; Wartzok et al., 2004; National Research Council (NRC), 2005). Controlled experiments with captive marine mammals have showed pronounced behavioral reactions, including avoidance of loud sound sources (Ridgway et al., 1997; Finneran et al., 2003). Observed responses of wild marine mammals to loud pulsed sound sources ( e.g., seismic airguns) have been varied but often consist of avoidance behavior or other behavioral changes (Richardson et al., 1995; Morton and Symonds, 2002; Nowacek et al., 2007).

    Available studies show wide variation in response to underwater sound; therefore, it is difficult to predict specifically how any given sound in a particular instance might affect marine mammals perceiving the signal. If a marine mammal does react briefly to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant ( e.g., Lusseau and Bejder, 2007; Weilgart, 2007; NRC, 2005). However, there are broad categories of potential response, which we describe in greater detail here, that include alteration of dive behavior, alteration of foraging behavior, effects to breathing, interference with or alteration of vocalization, avoidance, and flight.

    Changes in dive behavior can vary widely and may consist of increased or decreased dive times and surface intervals as well as changes in the rates of ascent and descent during a dive ( e.g., Frankel and Clark, 2000; Costa et al., 2003; Ng and Leung, 2003; Nowacek et al., 2004; Goldbogen et al., 2013a, 2013b). Variations in dive behavior may reflect interruptions in biologically significant activities ( e.g., foraging) or they may be of little biological significance. The impact of an alteration to dive behavior resulting from an acoustic exposure depends on what the animal is doing at the time of the exposure and the type and magnitude of the response.

    Disruption of feeding behavior can be difficult to correlate with anthropogenic sound exposure, so it is usually inferred by observed displacement from known foraging areas, the appearance of secondary indicators ( e.g., bubble nets or sediment plumes), or changes in dive behavior. However, acoustic and movement bio-logging tools have been used in some cases, to infer responses of feeding to anthropogenic noise. For example, Blair et al. (2016) reported significant effects on humpback whale foraging behavior in Stellwagen Bank in response to ship noise including slower descent rates, and fewer side-rolling events per dive with increasing ship nose. In addition, Wisniewska et al. (2018) reported that tagged harbor porpoises demonstrated fewer prey capture attempts when encountering occasional high-noise levels resulting from vessel noise as well as more vigorous fluking, interrupted foraging, and cessation of echolocation signals observed in response to some high-noise vessel passes.

    In response to playbacks of vibratory pile driving sounds, captive bottlenose dolphins showed changes in target detection and number of clicks used for ( print page 7090) a trained echolocation task (Branstetter et al. 2018). Similarly, harbor porpoises trained to collect fish during playback of impact pile driving sounds also showed potential changes in behavior and task success, though individual differences were prevalent (Kastelein et al. 2019d). As for other types of behavioral response, the frequency, duration, and temporal pattern of signal presentation, as well as differences in species sensitivity, are likely contributing factors to differences in response in any given circumstance ( e.g., Croll et al., 2001; Nowacek et al., 2004; Madsen et al., 2006; Yazvenko et al., 2007). A determination of whether foraging disruptions incur fitness consequences would require information on or estimates of the energetic requirements of the affected individuals and the relationships among prey availability, foraging effort and success, and the life history stage(s) of the animal.

    Variations in respiration naturally vary with different behaviors and alterations to breathing rate as a function of acoustic exposure can be expected to co-occur with other behavioral reactions, such as a flight response or an alteration in diving. However, respiration rates in and of themselves may be representative of annoyance or an acute stress response. Various studies have shown that respiration rates may either be unaffected or could increase, depending on the species and signal characteristics, again highlighting the importance in understanding species differences in the tolerance of underwater noise when determining the potential for impacts resulting from anthropogenic sound exposure ( e.g., Kastelein et al., 2001, 2005, 2006; Gailey et al., 2007). For example, harbor porpoise' respiration rate increased in response to pile driving sounds at and above a received broadband SPL of 136 dB (zero-peak SPL: 151 dB re 1 μPa; SEL of a single strike: 127 dB re 1 μPa2 -s) (Kastelein et al., 2013).

    Avoidance is the displacement of an individual from an area or migration path as a result of the presence of a sound or other stressors, and is one of the most obvious manifestations of disturbance in marine mammals (Richardson et al., 1995). For example, gray whales are known to change direction—deflecting from customary migratory paths—in order to avoid noise from seismic surveys (Malme et al., 1984). Avoidance may be short-term, with animals returning to the area once the noise has ceased ( e.g., Bowles et al., 1994; Goold, 1996; Stone et al., 2000; Morton and Symonds, 2002; Gailey et al., 2007). Longer-term displacement is possible, however, which may lead to changes in abundance or distribution patterns of the affected species in the affected region if habituation to the presence of the sound does not occur ( e.g., Blackwell et al., 2004; Bejder et al., 2006; Teilmann et al., 2006).

    A flight response is a dramatic change in normal movement to a directed and rapid movement away from the perceived location of a sound source. The flight response differs from other avoidance responses in the intensity of the response ( e.g., directed movement, rate of travel). Relatively little information on flight responses of marine mammals to anthropogenic signals exist, although observations of flight responses to the presence of predators have occurred (Connor and Heithaus, 1996; Bowers et al., 2018). The result of a flight response could range from brief, temporary exertion and displacement from the area where the signal provokes flight to, in extreme cases, marine mammal strandings (England et al., 2001). However, it should be noted that response to a perceived predator does not necessarily invoke flight (Ford and Reeves, 2008), and whether individuals are solitary or in groups may influence the response.

    Behavioral disturbance can also impact marine mammals in more subtle ways. Increased vigilance may result in costs related to diversion of focus and attention ( i.e., when a response consists of increased vigilance, it may come at the cost of decreased attention to other critical behaviors such as foraging or resting). These effects have generally not been demonstrated for marine mammals, but studies involving fishes and terrestrial animals have shown that increased vigilance may substantially reduce feeding rates ( e.g., Beauchamp and Livoreil, 1997; Fritz et al., 2002; Purser and Radford, 2011). In addition, chronic disturbance can cause population declines through reduction of fitness ( e.g., decline in body condition) and subsequent reduction in reproductive success, survival, or both ( e.g., Harrington and Veitch, 1992; Daan et al., 1996; Bradshaw et al., 1998). However, Ridgway et al. (2006) reported that increased vigilance in bottlenose dolphins exposed to sound over a 5-day period did not cause any sleep deprivation or stress effects.

    Many animals perform vital functions, such as feeding, resting, traveling, and socializing, on a diel cycle (24-hour cycle). Disruption of such functions resulting from reactions to stressors such as sound exposure are more likely to be significant if they last more than one diel cycle or recur on subsequent days (Southall et al., 2007). Consequently, a behavioral response lasting less than 1 day and not recurring on subsequent days is not considered particularly severe unless it could directly affect reproduction or survival (Southall et al., 2007). Note that there is a difference between multi-day substantive ( i.e., meaningful) behavioral reactions and multi-day anthropogenic activities. For example, just because an activity lasts for multiple days does not necessarily mean that individual animals are either exposed to activity-related stressors for multiple days or, further, exposed in a manner resulting in sustained multi-day substantive behavioral responses.

    Stress Responses —An animal's perception of a threat may be sufficient to trigger stress responses consisting of some combination of behavioral responses, autonomic nervous system responses, neuroendocrine responses, or immune responses ( e.g., Seyle, 1950; Moberg, 2000). In many cases, an animal's first and sometimes most economical (in terms of energetic costs) response is behavioral avoidance of the potential stressor. Autonomic nervous system responses to stress typically involve changes in heart rate, blood pressure, and gastrointestinal activity. These responses have a relatively short duration and may or may not have a significant long-term effect on an animal's fitness.

    Neuroendocrine stress responses often involve the hypothalamus-pituitary-adrenal system. Virtually all neuroendocrine functions that are affected by stress—including immune competence, reproduction, metabolism, and behavior—are regulated by pituitary hormones. Stress-induced changes in the secretion of pituitary hormones have been implicated in failed reproduction, altered metabolism, reduced immune competence, and behavioral disturbance ( e.g., Moberg, 1987; Blecha, 2000). Increases in the circulation of glucocorticoids are also equated with stress (Romano et al., 2004).

    The primary distinction between stress (which is adaptive and does not normally place an animal at risk) and “distress” is the cost of the response. During a stress response, an animal uses glycogen stores that can be quickly replenished once the stress is alleviated. In such circumstances, the cost of the stress response would not pose serious fitness consequences. However, when an animal does not have sufficient energy reserves to satisfy the energetic costs of a stress response, energy resources must be diverted from other functions. This state of distress will last until the animal replenishes its ( print page 7091) energetic reserves sufficient to restore normal function.

    Relationships between these physiological mechanisms, animal behavior, and the costs of stress responses are well-studied through controlled experiments and for both laboratory and free-ranging animals ( e.g., Holberton et al., 1996; Hood et al., 1998; Jessop et al., 2003; Krausman et al., 2004; Lankford et al., 2005). Stress responses due to exposure to anthropogenic sounds or other stressors and their effects on marine mammals have also been reviewed (Fair and Becker, 2000; Romano et al., 2002b) and, more rarely, studied in wild populations ( e.g., Romano et al., 2002a). For example, Rolland et al. (2012) found that noise reduction from reduced ship traffic in the Bay of Fundy was associated with decreased stress in North Atlantic right whales. These and other studies lead to a reasonable expectation that some marine mammals would experience physiological stress responses upon exposure to acoustic stressors and that it is possible that some of these would be classified as “distress.” In addition, any animal experiencing TTS would likely also experience stress responses (NRC, 2003), however distress is an unlikely result of this project based on observations of marine mammals during previous, similar projects in the area.

    Auditory Masking —Since many marine mammals rely on sound to find prey, moderate social interactions, and facilitate mating (Tyack, 2008), noise from anthropogenic sound sources can interfere with these functions, but only if the noise spectrum overlaps with the hearing sensitivity of the receiving marine mammal (Southall et al., 2007; Clark et al., 2009; Hatch et al., 2012). Chronic exposure to excessive, though not high-intensity, noise could cause masking at particular frequencies for marine mammals that utilize sound for vital biological functions (Clark et al., 2009). Acoustic masking is when other noises such as from human sources interfere with an animal's ability to detect, recognize, or discriminate between acoustic signals of interest ( e.g., those used for intraspecific communication and social interactions, prey detection, predator avoidance, navigation) (Richardson et al., 1995; Erbe et al., 2016). Therefore, under certain circumstances, marine mammals whose acoustical sensors or environment are being severely masked could also be impaired from maximizing their performance fitness in survival and reproduction. The ability of a noise source to mask biologically important sounds depends on the characteristics of both the noise source and the signal of interest ( e.g., signal-to-noise ratio, temporal variability, direction), in relation to each other and to an animal's hearing abilities ( e.g., sensitivity, frequency range, critical ratios, frequency discrimination, directional discrimination, age or TTS hearing loss), and existing ambient noise and propagation conditions (Hotchkin and Parks, 2013).

    Marine mammals vocalize for different purposes and across multiple modes, such as whistling, echolocation click production, calling, and singing. Changes in vocalization behavior in response to anthropogenic noise can occur for any of these modes and may result from a need to compete with an increase in background noise or may reflect increased vigilance or a startle response. For example, in the presence of potentially masking signals, humpback whales and killer whales have been observed to increase the length of their songs (Miller et al., 2000; Fristrup et al., 2003) or vocalizations (Foote et al., 2004), respectively, while North Atlantic right whales ( Eubalaena glacialis) have been observed to shift the frequency content of their calls upward while reducing the rate of calling in areas of increased anthropogenic noise (Parks et al., 2007). Fin whales have also been documented lowering the bandwidth, peak frequency, and center frequency of their vocalizations under increased levels of background noise from large vessels (Castellote et al. 2012). Other alterations to communication signals have also been observed. For example, gray whales, in response to playback experiments exposing them to vessel noise, have been observed increasing their vocalization rate and producing louder signals at times of increased outboard engine noise (Dahlheim and Castellote, 2016). Alternatively, animals may cease sound production during production of aversive signals (Bowles et al., 1994).

    Under certain circumstances, marine mammals experiencing significant masking could also be impaired from maximizing their performance fitness in survival and reproduction. Therefore, when the coincident (masking) sound is human-made, it may be considered harassment when disrupting or altering critical behaviors. It is important to distinguish TTS and PTS, which persist after the sound exposure, from masking, which occurs during the sound exposure. Because masking (without resulting in TS) is not associated with abnormal physiological function, it is not considered a physiological effect, but rather a potential behavioral effect (though not necessarily one that would be associated with harassment).

    The frequency range of the potentially masking sound is important in determining any potential behavioral impacts. For example, low-frequency signals may have less effect on high-frequency echolocation sounds produced by odontocetes but are more likely to affect detection of mysticete communication calls and other potentially important natural sounds such as those produced by surf and some prey species. The masking of communication signals by anthropogenic noise may be considered as a reduction in the communication space of animals ( e.g., Clark et al., 2009) and may result in energetic or other costs as animals change their vocalization behavior ( e.g., Miller et al., 2000; Foote et al., 2004; Parks et al., 2007; Di Iorio and Clark, 2010; Holt et al., 2009). Masking can be reduced in situations where the signal and noise come from different directions (Richardson et al., 1995), through amplitude modulation of the signal, or through other compensatory behaviors (Hotchkin and Parks, 2013). Masking can be tested directly in captive species ( e.g., Erbe, 2008), but in wild populations it must be either modeled or inferred from evidence of masking compensation. There are few studies addressing real-world masking sounds likely to be experienced by marine mammals in the wild ( e.g., Branstetter et al., 2013).

    Marine mammals at or near the proposed USCG project site may be exposed to anthropogenic noise which may be a source of masking. Vocalization changes may result from a need to compete with an increase in background noise and include increasing the source level, modifying the frequency, increasing the call repetition rate of vocalizations, or ceasing to vocalize in the presence of increased noise (Hotchkin and Parks, 2013). For example, in response to loud noise, beluga whales may shift the frequency of their echolocation clicks to prevent masking by anthropogenic noise (Tyack, 2000; Eickmeier and Vallarta, 2022).

    Masking occurs in the frequency band or bands that animals utilize and is more likely to occur in the presence of broadband, relatively continuous noise sources such as vibratory pile driving. Energy distribution of pile driving covers a broad frequency spectrum, and sound from pile driving would be within the audible range of pinnipeds and cetaceans present in the proposed action area. While some construction during the USCG's activities may mask ( print page 7092) some acoustic signals that are relevant to the daily behavior of marine mammals, the short-term duration and limited areas affected make it very unlikely that the fitness of individual marine mammals would be impacted.

    Airborne Acoustic Effects —Pinnipeds that occur near the project site could be exposed to airborne sounds associated with construction activities that have the potential to cause behavioral harassment, depending on their distance from these activities. Airborne noise would primarily be an issue for pinnipeds that are swimming or hauled out near the project site within the range of noise levels elevated above airborne acoustic harassment criteria. Although pinnipeds are known to haul-out regularly on man-made objects, we believe that incidents of take resulting solely from airborne sound are unlikely given there are no known pinniped haulout or pupping sites within the close vicinity of the proposed project area; the nearest known pinniped haulout is located approximately 400 m from the project site for harbor seals. The USCG evaluated the potential for airborne acoustic effects and these known pinniped sites were outside the area of disturbance. Cetaceans are not expected to be exposed to airborne sounds that would result in harassment as defined under the MMPA.

    We recognize that pinnipeds in the water could be exposed to airborne sound that may result in behavioral harassment when looking with their heads above water. Most likely, airborne sound would cause behavioral responses similar to those discussed above in relation to underwater sound. For instance, anthropogenic sound could cause hauled-out pinnipeds to exhibit changes in their normal behavior, such as reduction in vocalizations or cause them to temporarily abandon the area and move further from the source. However, these animals would previously have been “taken” because of exposure to underwater sound above the behavioral harassment thresholds, which are in all cases larger than those associated with airborne sound. Thus, the behavioral harassment of these animals is already accounted for in these estimates of potential take. Therefore, we do not believe that authorization of incidental take resulting from airborne sound for pinnipeds is warranted, and airborne sound is not discussed further.

    Marine Mammal Habitat Effects

    The project would occur near an active marine commercial and industrial area. Construction activities at the Station Siuslaw River could have localized, temporary impacts on marine mammal habitat and their prey by increasing in-water SPLs and slightly decreasing water quality. Increased noise levels may affect acoustic habitat (see Auditory Masking discussion above) and adversely affect marine mammal prey in the vicinity of the project area (see discussion below). During vibratory and impact pile driving, elevated levels of underwater noise would ensonify a portion of the Siuslaw River, where both fish and some mammals occur and could affect foraging success.

    Construction activities are of short duration and would likely have temporary impacts on marine mammal habitat through increases in underwater and airborne sound. These sounds would not be detectable at the nearest known sea lion and harbor sea haulouts, which are beyond the maximum distance of predicted in-air acoustical disturbance.

    Water Quality —Temporary and localized reduction in water quality would occur as a result of in-water construction activities. Most of this effect would occur during the installation and removal of piles when bottom sediments are disturbed. The installation and removal of piles would disturb bottom sediments and may cause a temporary increase in suspended sediment in the project area. During pile removal, sediment attached to the pile moves vertically through the water column until gravitational forces cause it to slough off under its own weight. The small resulting sediment plume is expected to settle out of the water column within a few hours. Studies of the effects of turbid water on fish (marine mammal prey) suggest that concentrations of suspended sediment can reach thousands of milligrams per liter before an acute toxic reaction is expected (Burton, 1993).

    Effects to turbidity and sedimentation are expected to be short-term, minor, and localized. Suspended sediments in the water column should dissipate and quickly return to background levels in all construction scenarios. Turbidity within the water column has the potential to reduce the level of oxygen in the water and irritate the gills of prey fish species in the proposed project area. However, turbidity plumes associated with the project would be temporary and localized, and fish in the proposed project area would be able to move away from and avoid the areas where plumes may occur. Therefore, it is expected that the impacts on prey fish species from turbidity, and therefore on marine mammals, would be minimal and temporary. In general, the area likely impacted by the proposed construction activities is relatively small compared to the available marine mammal habitat off the Coast of Oregon, and does not include any areas of particular importance.

    In-Water Construction Effects on Potential Prey —Sound may affect marine mammals through impacts on the abundance, behavior, or distribution of prey species ( e.g., crustaceans, cephalopods, fish, zooplankton). Marine mammal prey varies by species, season, and location and, for some, is not well documented. Here, we describe studies regarding the effects of noise on known marine mammal prey.

    Fish utilize the soundscape and components of sound in their environment to perform important functions such as foraging, predator avoidance, mating, and spawning ( e.g., Zelick et al., 1999; Fay, 2009). Depending on their hearing anatomy and peripheral sensory structures, which vary among species, fishes hear sounds using pressure and particle motion sensitivity capabilities and detect the motion of surrounding water (Fay et al., 2008). The potential effects of noise on fishes depends on the overlapping frequency range, distance from the sound source, water depth of exposure, and species-specific hearing sensitivity, anatomy, and physiology. Key impacts to fishes may include behavioral responses, hearing damage, barotrauma (pressure-related injuries), and mortality.

    Fish react to sounds which are especially strong and/or intermittent low-frequency sounds, and behavioral responses such as flight or avoidance are the most likely effects. Short duration, sharp sounds can cause overt or subtle changes in fish behavior and local distribution. The reaction of fish to noise depends on the physiological state of the fish, past exposures, motivation ( e.g., feeding, spawning, migration), and other environmental factors. Hastings and Popper (2005) identified several studies that suggest fish may relocate to avoid certain areas of sound energy. Additional studies have documented effects of pile driving on fish, although several are based on studies in support of large, multiyear bridge construction projects ( e.g., Scholik and Yan, 2001, 2002; Popper and Hastings, 2009). Several studies have demonstrated that impulse sounds might affect the distribution and behavior of some fishes, potentially impacting foraging opportunities or increasing energetic costs ( e.g., Fewtrell and McCauley, 2012; Pearson et al., 1992; Skalski et al., 1992; Santulli et al., 1999; Paxton et al., 2017). However, some studies have ( print page 7093) shown no or slight reaction to impulse sounds ( e.g., Pena et al., 2013; Wardle et al., 2001; Jorgenson and Gyselman, 2009; Cott et al., 2012). More commonly, though, the impacts of noise on fish are temporary.

    SPLs of sufficient strength have been known to cause injury to fish and fish mortality. However, in most fish species, hair cells in the ear continuously regenerate and loss of auditory function likely is restored when damaged cells are replaced with new cells. Halvorsen et al. (2012a) showed that a TTS of 4-6 dB was recoverable within 24 hours for one species. Impacts would be most severe when the individual fish is close to the source and when the duration of exposure is long. Injury caused by barotrauma can range from slight to severe and can cause death, and is most likely for fish with swim bladders. Barotrauma injuries have been documented during controlled exposure to impact pile driving (Halvorsen et al., 2012b; Casper et al., 2013).

    The greatest potential impact to fishes during construction would occur during impact pile installation of 24-in steel pipe piles, which is estimated to occur on up to 28 days for a maximum of 1,230 strikes per day. In-water construction activities would only occur during daylight hours, allowing fish to forage and transit the project area in the evening. Vibratory pile driving would possibly elicit behavioral reactions from fishes such as temporary avoidance of the area but is unlikely to cause injuries to fishes or have persistent effects on local fish populations. Construction also would have minimal permanent and temporary impacts on benthic invertebrate species, a marine mammal prey source. In addition, it should be noted that the area in question is low-quality habitat since it is already highly developed and experiences a high level of anthropogenic noise from normal operations and other vessel traffic. In general, any negative impacts on marine mammal prey species are expected to be minor and temporary.

    Fish populations in the proposed project area that serve as marine mammal prey could be temporarily affected by noise from pile installation and removal. The frequency range in which fishes generally perceive underwater sounds is 50 to 2,000 Hz, with peak sensitivities below 800 Hz (Popper and Hastings, 2009). Fish behavior or distribution may change, especially with strong and/or intermittent sounds that could harm fishes. High underwater SPLs have been documented to alter behavior, cause hearing loss, and injure or kill individual fish by causing serious internal injury (Hastings and Popper, 2005).

    The most likely impact to fish from pile driving activities in the project area would be temporary behavioral avoidance of the area. The duration of fish avoidance of an area after pile driving stops is unknown, but a rapid return to normal recruitment, distribution and behavior is anticipated. In general, impacts to marine mammal prey species are expected to be minor and temporary due to the expected short daily duration of individual pile driving events. Additionally, ODFW has a pile driving construction window (November 1, 2025 through February 28, 2026) to further reduce effects of the proposed project on fish species.

    In-Water Construction Effects on Potential Foraging Habitat —The area likely impacted by the project is relatively small compared to the available habitat on the coast of Oregon and does not include any BIAs or ESA-designated critical habitat. The total area affected by pile installation and removal and the new footprint is small compared to the vast foraging area available to marine mammals in the area. Pile driving and removal at the project site would not obstruct long-term movements or migration of marine mammals.

    Avoidance by potential prey ( i.e., fish) of the immediate area due to the temporary loss of this foraging habitat is also possible. The duration of fish and marine mammal avoidance of this area after pile driving stops is unknown, but a rapid return to normal recruitment, distribution, and behavior is anticipated. Any behavioral avoidance by fish or marine mammals of the disturbed area would still leave significantly large areas of fish and marine mammal foraging habitat in the nearby vicinity.

    In summary, given the short daily duration of sound associated with individual pile driving events and the relatively small areas being affected, pile driving activities associated with the proposed action are not likely to have a permanent adverse effect on any fish habitat, or populations of fish species. Any behavioral avoidance by fish of the disturbed area would still leave significantly large areas of fish and marine mammal foraging habitat in the nearby vicinity. Thus, we conclude that impacts of the specified activity are not likely to have more than short-term adverse effects on any prey habitat or populations of prey species. Further, any impacts to marine mammal habitat are not expected to result in significant or long-term consequences for individual marine mammals, or to contribute to adverse impacts on their populations.

    Estimated Take of Marine Mammals

    This section provides an estimate of the number of incidental takes proposed for authorization through the IHA, which will inform NMFS' consideration of “small numbers,” the negligible impact determinations, and impacts on subsistence uses.

    Harassment is the only type of take expected to result from these activities. Except with respect to certain activities not pertinent here, section 3(18) of the MMPA defines “harassment” as any act of pursuit, torment, or annoyance, which (i) has the potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B harassment).

    Authorized takes would primarily be by Level B harassment, as use of the acoustic sources ( i.e., pile driving) has the potential to result in disruption of behavioral patterns for individual marine mammals. There is also some potential for auditory injury (AUD INJ) (Level A harassment) to result, primarily for very high frequency species and phocids because predicted AUD INJ zones are larger than for high-frequency species and otariids. AUD INJ is unlikely to occur for high-frequency species and otariids. The proposed mitigation and monitoring measures are expected to minimize the severity of the taking to the extent practicable. As described previously, no serious injury or mortality is anticipated or proposed to be authorized for this activity. Below we describe how the proposed take numbers are estimated.

    For acoustic impacts, generally speaking, we estimate take by considering: (1) acoustic criteria above which NMFS believes the best available science indicates marine mammals would likely be behaviorally harassed or incur some degree of AUD INJ; (2) the area or volume of water that would be ensonified above these levels in a day; (3) the density or occurrence of marine mammals within these ensonified areas; and, (4) the number of days of activities. We note that while these factors can contribute to a basic calculation to provide an initial prediction of potential takes, additional information that can qualitatively inform take estimates is also sometimes available ( e.g., previous monitoring results or average group ( print page 7094) size). Below, we describe the factors considered here in more detail and present the proposed take estimates.

    Acoustic Criteria

    NMFS recommends the use of acoustic criteria that identify the received level of underwater sound above which exposed marine mammals would be reasonably expected to be behaviorally harassed (equated to Level B harassment) or to incur AUD INJ of some degree (equated to Level A harassment). We note that the criteria for AUD INJ, as well as the names of two hearing groups, have been recently updated (NMFS 2024) as reflected below in the Level A Harassment section.

    Level B Harassment —Though significantly driven by received level, the onset of behavioral disturbance from anthropogenic noise exposure is also informed to varying degrees by other factors related to the source or exposure context ( e.g., frequency, predictability, duty cycle, duration of the exposure, signal-to-noise ratio, distance to the source), the environment ( e.g., bathymetry, other noises in the area, predators in the area), and the receiving animals (hearing, motivation, experience, demography, life stage, depth) and can be difficult to predict ( e.g., Southall et al., 2007, 2021, Ellison et al., 2012). Based on what the available science indicates and the practical need to use a threshold based on a metric that is both predictable and measurable for most activities, NMFS typically uses a generalized acoustic threshold based on received level to estimate the onset of behavioral harassment. NMFS generally predicts that marine mammals are likely to be behaviorally harassed in a manner considered to be Level B harassment when exposed to underwater anthropogenic noise above root-mean-squared pressure received levels (RMS SPL) of 120 dB (referenced to 1 micropascal (re 1 μPa)) for continuous ( e.g., vibratory pile driving, drilling) and above RMS SPL 160 dB re 1 μPa for non-explosive impulsive ( e.g., seismic airguns) or intermittent ( e.g., scientific sonar) sources. Generally speaking, Level B harassment take estimates based on these behavioral harassment thresholds are expected to include any likely takes by TTS as, in most cases, the likelihood of TTS occurs at distances from the source less than those at which behavioral harassment is likely. TTS of a sufficient degree can manifest as behavioral harassment, as reduced hearing sensitivity and the potential reduced opportunities to detect important signals (conspecific communication, predators, prey) may result in changes in behavior patterns that would not otherwise occur.

    USCG's proposed activity includes the use of continuous (vibratory pile driving) and impulsive (impact pile driving) sources, and therefore the RMS SPL thresholds of 120 and 160 dB re 1 μPa are applicable.

    Level A harassment —NMFS' Updated Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 3.0) (Updated Technical Guidance, 2024) identifies dual criteria to assess AUD INJ (Level A harassment) to five different underwater marine mammal groups (based on hearing sensitivity) as a result of exposure to noise from two different types of sources (impulsive or non-impulsive). USCG's proposed activity includes the use of impulsive (impact pile driving) and non-impulsive (vibratory pile driving) sources.

    The 2024 Updated Technical Guidance criteria include both updated thresholds and updated weighting functions for each hearing group. The thresholds are provided in the table below. The references, analysis, and methodology used in the development of the criteria are described in NMFS' 2024 Updated Technical Guidance, which may be accessed at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-acoustic-technical-guidance-other-acoustic-tools.

    Table 4—Thresholds Identifying the Onset of Auditory Injury

    Hearing group AUD INJ onset acoustic thresholds * (received level)
    Impulsive Non-impulsive
    Low-Frequency (LF) Cetaceans Cell 1:Lpk,flat : 222 dB; LE,LF,24h : 183 dB Cell 2:LE,LF,24h : 197 dB.
    High-Frequency (HF) Cetaceans Cell 3:Lpk,flat : 230 dB; LE,HF,24h : 193 dB Cell 4:LE,HF,24h : 201 dB.
    Very High-Frequency (VHF) Cetaceans Cell 5:Lpk,flat : 202 dB; LE, VHF,24h : 159 dB Cell 6:LE,VHF,24h : 181 dB.
    Phocid Pinnipeds (PW) (Underwater) Cell 7:Lpk,flat : 223 dB; LE,PW,24h : 183 dB Cell 8:LE,PW,24h : 195 dB.
    Otariid Pinnipeds (OW) (Underwater) Cell 9:Lpk,flat : 230 dB; LE,OW,24h : 185 dB Cell 10:LE,OW,24h : 199 dB.
    * Dual metric criteria for impulsive sounds: Use whichever criteria results in the larger isopleth for calculating AUD INJ onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level criteria associated with impulsive sounds, the PK SPL criteria are recommended for consideration for non-impulsive sources.
    Note: Peak sound pressure level ( Lp,0-pk ) has a reference value of 1 µPa, and weighted cumulative sound exposure level ( LE,p ) has a reference value of 1 µPa2 s. In this table, criteria are abbreviated to be more reflective of International Organization for Standardization (ISO) standards (ISO 2017; ISO 2020). The subscript “flat” is being included to indicate peak sound pressure are flat weighted or unweighted within the generalized hearing range of marine mammals underwater ( i.e., 7 Hz to 165 kHz). The subscript associated with cumulative sound exposure level criteria indicates the designated marine mammal auditory weighting function (LF, HF, and VHF cetaceans, and PW and OW pinnipeds) and that the recommended accumulation period is 24 hours. The weighted cumulative sound exposure level criteria could be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under which these criteria will be exceeded.

    Ensonified Area

    Here, we describe operational and environmental parameters of the activity that are used in estimating the area ensonified above the acoustic thresholds, including source levels and transmission loss.

    The USCG opted to perform its own acoustic modeling for the Level A and Level B harassment isopleths using dBSea, a software developed by Marshall Day Acoustics for the modeling of underwater sound propagation in a variety of environments. Use of this model allowed USCG to incorporate site-specific information, therefore providing more accurate results than other more generalized tools. dBSea was also used in a previous construction project by the USCG (88 FR 77985, November 11, 2023). NMFS has reviewed USCG's modeling and determined that it is acceptable for use here.

    Marshall Day Acoustics built the model by importing bathymetry data and placing noise sources in the ( print page 7095) environment. Each source can consist of equipment chosen from either the standard or the user-defined databases. Noise mitigation methods may also be included. The user has control over the seabed and water properties including sound speed profile, temperature, salinity, and current. To examine results in more detail, the model allows users to plot noise levels in cross sections, or extract a detailed spectrum at any point in the calculation area. USCG calculated noise levels to the deepest depth within the project area.

    USCG derived representative acoustic modeling scenarios based on descriptions of the expected construction activities through consultations between the USCG project design and engineering teams. The team modeled activities that are expected to result in take of marine mammals ( i.e., in-water pile driving and removal) at a location with characteristics representative of the project site. The USCG modeled the full range of potential water depths in the project area at a single representative location. As described in the Detailed Description of the Specified Activity section above, USCG may install a variety of pile types and sizes, and the exact pile sizes have not yet been determined. However, in an effort to avoid underestimating potential impacts to marine mammals, USCG conducted its analysis using the maximum possible pile size for each project use. Table 5 lists the sound source levels for each activity that USCG incorporated into the model. Table 6 shows the model-estimated Level A and Level B harassment isopleths for the proposed activities. Please refer to the Acoustic Assessment included in USCG's IHA application for additional details on the modeling principles and assumptions and a summary of construction and operational scenarios included in the underwater acoustic modeling analysis.

    Table 5—Estimates of Underwater Sound Sources * Generated During Vibratory and Impact Pile Installation and Vibratory Pile Removal

    Pile driving method Pile type and size db RMS dB peak db SEL Reference
    Impact installation Steel pipe pile 24-in 194 207 178 Caltrans 2020.
    H-pile 178 200 166 Caltrans 2020.
    Vibratory installation Steel pipe pile 24-in 165 Caltrans 2020.
    Vibratory removal Timber 162 Caltrans 2020.
    Note: dB peak = peak sound level; rms = root mean square; SEL = sound exposure level.
    * All sound levels are referenced at 10 m.

    Table 6—Level A and Level B Harassment Isopleths

    Size and type Level A isopleth (m) Level B isopleth (m)
    VHF Phocids Otariids
    Vibratory Installation and Removal
    24-in steel pipe pile installation 58 39 17 1,117
    Timber removal 16 14 1,106
    Impact Installation
    24-in steel pipe pile 335 256 95 717
    H-pile 96 35 18 110

    Marine Mammal Occurrence and Take Calculation and Estimation

    In this section, we provide information about the occurrence of marine mammals, including density or other relevant information which would inform the take calculations and describe how the information provided is synthesized to produce a quantitative estimate of the take that is reasonably likely to occur and proposed for authorization. The USCG proposed using marine mammal species densities from the Pacific Navy Marine Species Density Database to estimate take for marine mammals. This database incorporates analyzed literature and research for marine mammal density estimates per season for regions throughout the U.S., and the USCG based their take estimates on regionally available population density estimates and site-specific knowledge. Although this database provides densities for all species present in the action area, the densities are based on offshore abundance and not directly relevant to occurrence within in the Siuslaw River. Following careful review of the analysis presented by the USCG in its application, including marine mammal occurrence data, NMFS has determined that different information inputs than those selected by the USCG, represent the best available scientific information for marine mammal abundance in the action area. These selections are discussed in greater detail below.

    For all species, the numbers of individuals are based on average group sizes from Bates et al., 2023, that described marine mammal occurrences near Coos Bay, Oregon in 2014 and 2015. While Coos Bay is south of the action area, this area is more representative of the action area within the Siuslaw River than the offshore data in the application. We derived potential take estimates from the average group sizes recorded over the specified period in Bates et al., 2023 and used the occurrences of these sightings during the surveys, along with sightings in OBIS-SEAMAP around the action area, to estimate our sighing rates in the project vicinity (table 7). ( print page 7096)

    Table 7—Species Rate in the Action Area

    Species Average group size Sighting rate for action area
    California sea lion 1.4 Group every other day.
    Steller sea lion 1.8 Group every other day.
    Harbor seal 1 2 groups/day.
    Harbor porpoise 1.3 Group every other day.

    To calculate the total estimated takes by Level B harassment, we multiplied the estimated days of activity by the associated average group size and sighting rate for each species (table 7). There is also some potential for take by Level A harassment of harbor seal and harbor porpoise during impact pile driving due to the largest zones of each species being greater than the shutdown zones and because of the cryptic nature and assumed lower detectability of these species.

    Based on the relative proportion of the area expected to be ensonified above the Level A harassment threshold for phocids from impact pile driving (approximately 0.14 square kilometers (km2 )) to the area ensonified above the Level B harassment threshold (0.59 km2 for impact pile driving), we estimated that of the total number of harbor seals that may be located within the greater Level B harassment zone, approximately 24 percent would enter the smaller Level A harassment zone (256 m) and stay in the zone long enough to incur auditory injury. Thus, we assume that 24 percent of the total estimated takes of harbor seals (96 individuals; see table 8) would be by Level A harassment. Therefore, we are proposing to authorize 23 takes of harbor seals by Level A harassment and 73 takes by Level B harassment (table 8). Take by Level A harassment for harbor porpoise was calculated in the same way as for harbor seals. For otarrids, we are not proposing to authorize take by Level A harassment as the shutdown zones are much larger than the Level A harassment zones for most activities, and the likely occurrence of otariids in the action area is much lower than for harbor porpoise and harbor seals.

    Table 8—Proposed Take of Marine Mammals by Level A and Level B Harassment by Species and Stock and Percent of Stock Abundance

    Species Stock Proposed take by Level A harassment Proposed take by Level B harassment Total proposed take Percent of stock taken
    California sea lion U.S 0 34 34 <0.1
    Steller sea lion Eastern 0 43 43 0.1
    Harbor seal Oregon/Washington Coast 23 73 96 0.4
    Harbor porpoise Central Oregon 11 20 31 0.4

    Proposed Mitigation

    In order to issue an IHA under section 101(a)(5)(D) of the MMPA, NMFS must set forth the permissible methods of taking pursuant to the activity, and other means of effecting the least practicable impact on the species or stock and its habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stock for taking for certain subsistence uses. NMFS regulations require applicants for incidental take authorizations to include information about the availability and feasibility (economic and technological) of equipment, methods, and manner of conducting the activity or other means of effecting the least practicable adverse impact upon the affected species or stocks, and their habitat (50 CFR 216.104(a)(11)).

    In evaluating how mitigation may or may not be appropriate to ensure the least practicable adverse impact on species or stocks and their habitat, as well as subsistence uses where applicable, NMFS considers two primary factors:

    1. The manner in which, and the degree to which, the successful implementation of the measure(s) is expected to reduce impacts to marine mammals, marine mammal species or stocks, and their habitat. This considers the nature of the potential adverse impact being mitigated (likelihood, scope, range). It further considers the likelihood that the measure would be effective if implemented (probability of accomplishing the mitigating result if implemented as planned), the likelihood of effective implementation (probability implemented as planned), and;

    2. The practicability of the measures for applicant implementation, which may consider such things as cost, and impact on operations.

    USCG must ensure that construction supervisors and crews, the monitoring team, and relevant USCG staff are trained prior to the start of all pile driving activity, so that responsibilities, communication procedures, monitoring protocols, and operational procedures are clearly understood. New personnel joining during the project must be trained prior to commencing work.

    Pre- and Post-Activity Monitoring

    • Monitoring must take place from 30 minutes prior to initiation of pile driving activity (i.e., pre-clearance monitoring) through 30 minutes post-completion of pile driving activity;
    • Pre-start clearance monitoring must be conducted during periods of visibility sufficient for the lead PSO to determine that the shutdown zones indicated in table 9 are clear of marine mammals. Pile driving may commence following 30 minutes of observation when the determination is made that the shutdown zones are clear of marine mammals;

    Soft Start

    • USCG must use soft start techniques when impact pile driving. Soft start requires contractors to provide an initial set of three strikes at reduced energy, followed by a 30 second waiting period, then two subsequent reduced-energy strike sets. A soft start must be implemented at the start of each day's impact pile driving and at any time ( print page 7097) following cessation of impact pile driving for a period of 30 minutes or longer; and

    Shutdown Zones

    USCG would establish shutdown zones for all pile driving activities. The purpose of a shutdown zone is generally to define an area within which shutdown of the activity would occur upon sighting of a marine mammal (or in anticipation of an animal entering the defined area).

    If a marine mammal is observed entering or within the shutdown zones indicated in table 9, pile driving must be delayed or halted. For in-water heavy machinery activities other than pile driving, if a marine mammal comes within 10 m, work would stop and vessels would reduce speed to the minimum level required to maintain steerage and safe working conditions. A 10 m shutdown zone would also serve to protect marine mammals from physical interactions with project vessels during pile driving and other construction activities, such as barge positioning or drilling. If an activity is delayed or halted due to the presence of a marine mammal, the activity may not commence or resume until either the animal has voluntarily exited and been visually confirmed beyond the shutdown zone indicated in table 9 or 15 minutes have passed without re-detection of the animal. Construction activities must be halted upon observation of a species for which incidental take is not authorized or a species for which incidental take has been authorized but the authorized number of takes has been met entering or within the harassment zone.

    All marine mammals would be monitored in the Level B harassment zones and throughout the area as far as visual monitoring can take place. If a marine mammal enters the Level B harassment zone, in-water activities would continue and the animal's presence within the estimated harassment zone would be documented.

    USCG would also establish shutdown zones for all marine mammals for which take has not been authorized or for which incidental take has been authorized but the authorized number of takes has been met. These zones are equivalent to the Level B harassment zones for each activity. If a marine mammal species for which take is not authorized by this IHA enters the shutdown zone, all in-water activities would cease until the animal leaves the zone or has not been observed for at least 15 minutes, and USCG would notify NMFS about the species and precautions taken. Pile driving would proceed if the non-IHA species is observed to leave the Level B harassment zone or if 15 minutes have passed since the last observation.

    If shutdown and/or clearance procedures would result in an imminent safety concern, as determined by USCG or its designated officials, the in-water activity would be allowed to continue until the safety concern has been addressed, and the animal would be continuously monitored.

    Table 9—Shutdown Zones and Level B Harassment Zones

    Activity Minimum shutdown zone (m) Level B harassment zone (m)
    VHF cetaceans Phocid Otariid
    Vibratory Removal 20 20 10 1,110
    Vibratory Installation 60 40 20 1,120
    Impact Installation 200 100 100 720

Document Information

Published:
01/21/2025
Department:
National Oceanic and Atmospheric Administration
Entry Type:
Notice
Action:
Notice; proposed incidental harassment authorization; request for comments on proposed authorization and possible renewal.
Document Number:
2025-01383
Dates:
Comments and information must be received no later than February 20, 2025.
Pages:
7082-7101 (20 pages)
Docket Numbers:
RTID 0648-XE614
PDF File:
2025-01383.pdf