97-1752. Rhone-Poulenc Ag Company; Pesticide Tolerance Petition Filing  

  • [Federal Register Volume 62, Number 16 (Friday, January 24, 1997)]
    [Notices]
    [Pages 3691-3696]
    From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
    [FR Doc No: 97-1752]
    
    
    -----------------------------------------------------------------------
    
    ENVIRONMENTAL PROTECTION AGENCY
    [PF-689; FRL-5582-7]
    
    
    Rhone-Poulenc Ag Company; Pesticide Tolerance Petition Filing
    
    AGENCY: Environmental Protection Agency (EPA).
    
    ACTION: Notice of filing.
    
    -----------------------------------------------------------------------
    
    SUMMARY: This notice announces the filing of a pesticide petition 
    proposing the extension of the temporary tolerances for the combined 
    residues of the fungicide iprodione [3-(3,5-dichlorophenyl)-N-(1-
    methylethyl)-2,4-dioxo-1-imidazolidinecarboxamide], its isomer [3-(1-
    methylethyl)-N-(3,5-dichlorophenyl)-2,4-dioxo-1-
    imidazolidinecarboxamide], and its metabolite [3-(3,5-dichlorophenyl)-
    2,4-dioxo-1-imidazolidinecarboxamide] (CAS Number 36734-19-7, PC Code 
    109801) in or on the raw agricultural commodities tangerines and 
    tangelos at 3.0 ppm. The notice includes a summary of the petition 
    prepared by the petitioner, Rhone-Poulenc Ag Company.
    DATES: Comments, identified by the docket control number [PF-689], must 
    be received on or before, February 24, 1997.
    
    ADDRESSES: By mail, submit written comments to: Public Response and 
    Program Resources Branch, Field Operations Division (7506C), Office of 
    Pesticide Programs, Environmental Protection Agency, 401 M St., SW., 
    Washington, DC 20460. In person, bring comments to: Crystal Mall #2, 
    Room 1132, 1921 Jefferson Davis Highway, Arlington, VA.
        Comments and data may also be submitted electronically by sending 
    electronic mail (e-mail) to: opp-docket@epamail.epa.gov. Electronic 
    comments must be submitted as an ASCII file avoiding the use of special 
    characters and any form of encryption. Comments and data will also be 
    accepted on disks in WordPerfect in 5.1 file format or ASCII file 
    format. All comments and data in electronic form must be identified by 
    the docket control number [PF-689]. Electronic comments on this notice 
    may be filed online at many Federal Depository Libraries. Additional 
    information on electronic submissions can be found below in this 
    document.
        Information submitted as comments concerning this document may be 
    claimed confidential by marking any part or all of that information as 
    ``Confidential Business Information'' (CBI). The CBI should not be 
    submitted through e-mail. Information marked as CBI will not be 
    disclosed except in accordance with procedures set forth in 40 CFR part 
    2. A copy of the comment that does not contain CBI must be submitted 
    for inclusion in the public record. Information not marked confidential 
    may be disclosed publicly by EPA without prior notice. All written 
    comments will be available for public inspection in Room 1132 at the 
    address given above, from 8:30 a.m. to 4 p.m., Monday through Friday, 
    excluding legal holidays.
    
    FOR FURTHER INFORMATION CONTACT: By mail: Connie Welch, Product Manager 
    (PM 21), Registration Division (7505C), Office of Pesticide Programs, 
    Environmental Protection Agency, 401 M St., SW., Washington, DC 20460. 
    Office location, telephone number, and e-mail address: Crystal Mall #2, 
    Room 227, 1921 Jefferson Davis Highway, Arlington, VA, 703-305-6226, e-
    mail: welch.connie@epamail.epa.gov.
    SUPPLEMENTARY INFORMATION: EPA has received a pesticide petition (PP 
    3G4210) from Rhone-Poulenc Ag Company (Rhone-Poulenc), P.O. Box 12014, 
    T.W. Alexander Drive, Research Triangle Park, NC 27709 proposing 
    pursuant to section 408(d) of the Federal Food, Drug and Cosmetic Act 
    (FFDC), 21 U.S.C. 346(d), to extend the temporary tolerances for the 
    fungicide iprodione [3-(3,5-dichlorophenyl)-N-(1-methylethyl)-2,4-
    dioxo-1-imidazolidinecarboxamide], its isomer [3-(1-methylethyl)-N-
    (3,5-dichlorophenyl)-2,4-dioxo-1-imidazolidinecarboxamide], and its 
    metabolite [3-(3,5-dichlorophenyl)-2,4-dioxo-1-
    imidazolidinecarboxamide] in or on the raw agricultural commodities 
    tangerines and tangelos at 3.0 ppm. The current temporary tolerances 
    expire on April 15, 1997. EPA has determined that the petition contains 
    data or information regarding the elements set forth in section 
    408(d)(2) of the FFDC; however, EPA has not fully evaluated the 
    sufficiency of the submitted data at this time or whether the data 
    supports granting of the petition. Additional data may be needed before 
    EPA rules on the petition. As required by section 408(d) of the FFDC, 
    as recently amended by the Food Quality Protection Act (FQPA), Pub. L. 
    104-170), Rhone-Poulenc included in the petition a summary of the 
    petition and authorization for the summary to be published in the 
    Federal Register in a notice of receipt of the petition. The summary 
    represents the views of Rhone-Poulenc. EPA is in the process of 
    evaluating the petition. As required by section 408(d)(3) of the FFDC, 
    EPA is including the summary as a part of this notice of filing. EPA 
    may have made minor edits to the summary for the purpose of clarity.
    
    I. Petition Summary
    
        There is an extensive data base supporting the registration of 
    iprodione. All the studies required under the reregistration process 
    mandated by FIFRA 88 have been submitted. Most of these studies have 
    been reviewed by the Agency and accepted.
        The temporary tolerances for iprodione on tangelos and tangerines 
    at 3.0 ppm are considered adequate to cover residues resulting from the 
    limited use of iprodione in the proposed experimental use program. The 
    tolerance level is based on field trial data with an overall mean 
    residue of 1.19 ppm for tangelos and tangerines. The nature of the 
    residue in plants is adequately defined. Plant metabolism studies have 
    been reviewed in connection with previous petitions for tolerances. The 
    residues of concern are iprodione, its isomer RP 30228, and its 
    metabolite RP 32490. The Phase IV Review concluded that additional 
    plant metabolism studies are not needed.
        The nature of the residue in animals is adequately understood 
    considering the limited use of iprodione on tangerines and tangelos as 
    proposed in the experimental use permit (EUP). The residues of concern 
    in animals are iprodione, its isomer RP 30228, its metabolites RP 32490 
    and RP 36114. The established tolerances for iprodione and its 
    metabolites in meat, milk, poultry, and eggs are adequate to cover 
    secondary residues in animal commodities resulting from the 
    experimental use on tangerines and tangelos. Citrus feedstuff 
    theoretically accounts only for a maximum of 20% of beef and dairy 
    cattle diet. Citrus
    
    [[Page 3692]]
    
    feedstuff is not fed to poultry and swine. Since the EUP covers only a 
    maximum of 4,000 acres which represents less than 0.4% of total U.S. 
    bearing citrus fruit production for 1996, the actual iprodione 
    contribution to the diet of livestock is not significant.
        An adequate analytical method, gas liquid chromatography using an 
    electron-capture detector, is available in the Pesticide Analytical 
    Manual, Vol. II, for enforcement purposes. In the Phase IV Review, EPA 
    requested that a substitute for benzene be used in the method of 
    analysis used in new crop field trials. In response to this request, 
    Rhone-Poulenc developed a common moiety GC method with a 0.05 ppm limit 
    of quantitation (LOQ). An Independent Laboratory Validation for this 
    method was submitted.
        Iprodione is an important product for growers of several minor 
    crops. These include garlic, ginseng, chinese mustard, broccoli, 
    caneberries (blackberries, loganberries, and raspberries), and 
    bushberries (blueberries, currant, elderberries, gooseberries, and 
    huckleberries).
        There are no Codex tolerances for iprodione on citrus commodities.
        The following mammalian toxicity studies have been conducted to 
    support the extension of the temporary tolerances for iprodione on 
    tangerines and tangelos.
    
    A. Toxicological Profile
    
        1. Acute toxicity. A complete battery of acute toxicity studies for 
    iprodione were completed. Iprodione has low acute toxicity. The acute 
    oral toxicity study in the rat resulted in LD50s of 3,629 mg/kg 
    and 4,468 mg/kg for females and the combined sexes, respectively. The 
    acute dermal LD50 in both rats and rabbits is >2,000 mg/kg. The 
    acute inhalation LC50 for a 4-hour exposure to rats is >5.16 mg/L. 
    No skin or eye irritation or dermal sensitization are produced by 
    iprodione. Based on the results of these studies, iprodione was placed 
    in toxicity category III.
        Conclusion. Based on the acute toxicity data cited above, Rhone-
    Poulenc believes that iprodione does not pose any acute dietary risks.
        2. Mutagenicity. Mutagenicity studies completed include Salmonella 
    typhimurium and Escherichia coli reverse mutation (all negative), 
    induction tests with Escherichia coli (all negative), DNA repair test 
    in Escherichia coli (negative), DNA damage in Bacillus subtilis 
    (positive), Rec assay in Bacillus subtilis (negative), mutagenicity in 
    Saccharomyces cerevisiae D7 (negative), forward mutation in CHO/HGPRT 
    assay (negative), chromosome aberrations in CHO cells (negative), 
    sister chromatid exchange in CHO cells (negative), in vivo micronucleus 
    test (negative), in vivo host mediated assay with Salmonella 
    typhimurium G46 (negative) and dominant lethal test in male mice 
    (negative).
        Conclusion. Based on the data cited above, Rhone-Poulenc believes 
    that the weight of evidence indicates that iprodione does not pose a 
    mutagenic hazard to humans.
        3. Rat metabolism. 14C-Iprodione was absorbed readily from the 
    gastrointestinal tract, metabolized, and excreted by rats of both sexes 
    following single low [50 mg/kg] and high [900 mg/kg] oral doses and 14 
    repeated low [50 mg/kg] doses. Peak blood levels were observed at 4 and 
    2 hours, respectively, in low-dose males and females and at 6 hours in 
    high-dose rats of both sexes. The elimination of 14C from the 
    blood was slower in males than females. There were both dose and sex-
    related differences noted in absorption: males absorbed a greater 
    percentage of the low and repeated doses than females. Although levels 
    of 14C were found in most tissues monitored, the levels were 
    0.5% of the total amount administered. It is to be noted 
    that the testes of the low-dose [50 mg/kg] males showed no detectable 
    amount of 14C; the high dose in the rat chronic toxicity/
    carcinogenicity study where testicular tumors were observed was 69 mg/
    kg. The primary route of elimination of 14C following single and 
    repeat low-dose exposure was the urine, and the feces was the primary 
    route following high-dose exposure. Dealkylation and cleavage of the 
    hydantoin ring were the two primary steps in the metabolism of 
    iprodione. Hydroxylation of the phenyl ring and oxidation of the alkyl 
    chain also occurred. The primary metabolites recovered from the urine 
    [both sexes] included a dealkylated derivative of iprodione and two 
    polar but unidentified compounds. Males produced larger amounts of a 
    hydantoin ring-opened metabolite than females, and the urine of the 
    females contained a higher proportion of unchanged parent compound than 
    that of the males. Several urinary metabolites were not identified. The 
    feces contained much larger amounts of unchanged parent compound than 
    the urine, which the authors suggested was unabsorbed iprodione and 
    metabolites or hydrolyzed conjugates of absorbed material.
        In another single oral administration study in rats using 50 mg/kg, 
    no sex differences were apparent in the excretion profile, and both 
    urinary elimination [37%M/28%F] and fecal excretion [56%M/50%F] are 
    major routes of excretion. The metabolism of iprodione was extensive 
    and characterized by the large number of metabolites formed. In the 
    urine, RP 36115, RP 32490, RP 36112, RP 36119, and RP 30228 were either 
    confirmed or indicated. The feces contained a large proportion of 
    parent compound; the major fecal metabolites were RP 36115, RP 36114, 
    RP 32490, and RP 30228. A general metabolic pathway for iprodione in 
    the rat indicates that biotransformation results in hydroxylation of 
    the aromatic ring, degradation of the isopropylcarbamoyl chain and 
    rearrangement followed by cleavage of the hydantoin moiety. 
    Additionally, structural isomers of iprodione resulting from molecular 
    rearrangement, as well as intermediates in the pathway were detected.
        4. Chronic effect. The chronic toxicity of iprodione has been 
    extensively studied in three species, i.e. dog, rat, and mouse:
        a. Dog--i. In the first study, conducted at dose levels of 100, 
    600, and 3,600 ppm a clear no observed effect level (NOEL) was 
    established at 100 ppm (4.2 mg/kg/day). The lowest effect level (LEL) 
    was set at 600 ppm based on equivocal effects such as decreased 
    prostate weight and an increased incidence of Heinz bodies in 
    erythrocytes in males.
        ii. A second study (MRID 00144391, 41327001, 42211101), conducted 
    at dose levels of 200, 300, 400, and 600 ppm, was performed as a 
    bridging study for EPA in order to establish a higher NOEL. In this 
    study no clear indications of any toxicological effects were noted. 
    From the results of the two complementary studies, a conservative NOEL 
    of 400 ppm (17.5 mg/kg/day in males and 18.4 mg/kg/day in females) and 
    a LEL of 600 ppm (24.6 mg/kg/day in males and 26.4 mg/kg/day in 
    females) based on depressed blood cell parameters were established.
        b. Rat--i. In an initial study, Charles River outbred CD albino 
    rats were fed diets containing 125, 250, or 1,000 ppm (6.25, 12.5, and 
    50 mg/kg/day) of iprodione technical for 24 months. In this study, the 
    NOEL of iprodione in rats was observed to be greater than 1,000 ppm 
    (i.e. >50 mg/kg/day).
        ii. In a repeat study, Sprague Dawley rats were administered 150, 
    300, or 1,600 ppm iprodione technical in the diet for 24 months. The 
    NOEL for chronic toxicity was set at 150 ppm (mean intake of males and 
    females was 7.25 mg/kg/day) and the LEL was 300 ppm (12.4 mg/kg/day for 
    males and 16.5 mg/kg/day for females).
    
    [[Page 3693]]
    
        c. Mouse--i. In an initial study, Carworth CF-1 outbred albino mice 
    were fed diets containing 200, 500, 1,250 ppm (28.6, 71.4, and 178.6 
    mg/kg/day) of iprodione technical for 18 months. In this study, the 
    NOEL of iprodione in mice was greater than 1,250 ppm (i.e. >178.6 mg/
    kg/day).
        ii. In a repeat study, iprodione technical was administered at 
    dietary concentrations of 160, 800, or 4,000 ppm to CD-1 mice for 99 
    weeks. The NOEL for chronic toxicity was set at 160 ppm (23 mg/kg/day 
    for males and 27 mg/kg/day for the females) and the LEL at 800 ppm (115 
    mg/kg/day for males and 138 mg/kg/day for females).
        Conclusion. The chronic reference dose (RfD) for iprodione is 
    0.0725 mg/kg/day. This RfD is based on the NOEL of 7.25 mg/kg/day 
    determined from the rat combined chronic toxicity and carcinogenicity 
    study. An uncertainty factor of 100 has been included in the RfD value 
    to account for inter and intra-species variations.
        5. Carcinogenicity--a. Rat--i. In the initial 2-year combined 
    toxicity/carcinogenicity study, Charles River outbred CD albino rats 
    were fed diets containing 125, 250, or 1,000 ppm of iprodione 
    technical. In this study, no increase in neoplastic lesions were 
    observed at any of the treatment levels. The NOEL for oncogenicity in 
    rats was observed to be greater than 1,000 ppm (>50 mg/kg/day).
        ii. In the repeat study conducted with Sprague Dawley rats 
    administered 150, 300, or 1,600 ppm iprodione technical in the diet, no 
    increase in tumor incidence was noted at interim sacrifice. Microscopic 
    examination of animals found dead, sacrificed in extremis, or killed at 
    termination after 104 weeks revealed an increased incidence of benign 
    interstitial cell tumors in rats treated with 1,600 ppm (29/60 animals) 
    compared with controls (3/60). No increased incidence of any other 
    tumor type was recorded. No treatment-related neoplastic lesions were 
    observed in the 150 or 300 ppm treatment groups. The NOEL for 
    oncogenicity in males in this study was 300 ppm (12.4 mg/kg/day) and 
    the LEL 1,600 ppm (69 mg/kg/day). There was no indications of 
    oncogenicity in females at any dose level.
        b. Mouse--i. In the initial study, Carworth CF-1 outbred albino 
    mice were fed diets containing 200, 500, 1,250 ppm of iprodione 
    technical for 18 months. In this study, no increase in neoplastic 
    lesions were observed at any of the treatment levels. The NOEL for 
    oncogenicity in mice was observed to be greater than 1,250 ppm (>178.6 
    mg/kg/day).
        ii. In the repeat mouse oncogenicity study, iprodione technical was 
    administered at dietary concentrations of 0, 160, 800, or 4,000 ppm to 
    CD-1 mice for 99 weeks. Microscopic examination of animals found dead, 
    sacrificed in extremis, or killed at termination after 99 weeks 
    revealed an increased incidence of benign and malignant liver cell 
    tumors in both sexes. A slight increase in the incidence of luteomas in 
    the ovaries of females was also noted at 4,000 ppm. No increased 
    incidence of any other tumor type was recorded. No treatment-related 
    neoplastic lesions were observed in the 160 or 800 ppm treatment 
    groups. The NOEL for oncogenicity in this study was 800 ppm (115 mg/kg/
    day in males and 138 mg/kg/day in females) and the LEL was 4,000 ppm 
    (604 mg/kg/day in males and 793 mg/kg/day in females).
        Discussion. A number of mechanistic studies have been conducted in 
    order to elucidate the mechanism of testicular toxicity and 
    carcinogenicity in the rat and hepatic toxicity and carcinogenicity in 
    the mouse.
        c. Testicular toxicity and carcinogenicity in the rat. The results 
    of recently completed mechanistic studies have further elucidated the 
    mechanism of iprodione testicular toxicity. The available evidence 
    suggests that the primary mode of action of iprodione in the testes is 
    via a disruption of testosterone biosynthesis in the interstitial 
    cells. The resulting reduction in testosterone secretion may lead to a 
    compensatory hyperplasia in order to maintain normal hormonal 
    homeostasis. Tumors may then develop in sensitive species, such as the 
    rat, due to the persistent hyperplasia. The evidence supporting such a 
    mechanism of action can be summarized as follows:
         Iprodione and certain metabolites (RP 36112 and RP 36115) 
    have been shown to inhibit testosterone secretion from cultures of 
    porcine Leydig cells. Recently, it has been demonstrated that iprodione 
    inhibits testosterone synthesis and release from rat testicular 
    sections in vitro.
         The site of action whereby iprodione and its metabolites 
    (RP 36112 and RP 36115) appear to modulate Leydig cell steroidogenesis 
    has recently been identified using porcine Leydig cell cultures. 
    Iprodione appears to act through a rapid, reversible, interaction with 
    cholesterol and/or steroid hormones at the level of some transport 
    proteins and/or steroidogenic enzymes.
         Hormonal perturbation has been observed in a rat in vivo 
    study with iprodione. These were however limited to increases in LH and 
    FSH levels following 15 days of iprodione treatment and slight 
    differences in the secretion pattern of LH and testosterone following 
    30-days of treatment. In the same study, decreases in absolute and 
    relative weights of total accessory sex organs and seminal vesicles 
    (but not the prostate or epididymides) were noted at final sacrifice. 
    By contrast, treatment with flutamide induced marked and persistent 
    increases in plasma levels of testosterone, estradiol, LH and FSH and 
    these were associated with marked decreases in the epididymides and 
    accessory sex organs weights (ventral prostate and seminal vesicles).
         Data from subchronic and chronic toxicity studies show 
    that several major target organs (adrenals, testicular and ovarian 
    interstitial cells) are tissues which secrete steroid hormones.
         No clear evidence of competitive binding to the androgen 
    receptor was found for iprodione or its major metabolites (RP 32490, RP 
    36114, RP 36118, and RP 36119). Several minor metabolites did exhibit a 
    binding activity close to the reference compound flutamide. However, it 
    is generally accepted that the anti-androgenic activity of flutamide is 
    due to its major metabolite hydroxyflutamide, which binds to the 
    androgen receptor with a greater affinity than flutamide (Simard et al, 
    1986).
        It is well established that a threshold can be expected for 
    hormonally mediated oncogenic mechanisms. In the rat chronic/
    oncogenicity study, Leydig cell tumors were only observed at highly 
    toxic dose levels which were at or above the MTD (mean body weight 
    gains were reduced from 13.7% to 16.4% between weeks 0 to 12, 12 to 22, 
    and 0 to 104 of the study in high dose males) and clear thresholds 
    exist for both non-neoplastic lesions and tumors. In addition, the 
    cellular effects of iprodione have been demonstrated to be reversible 
    since the inhibition of testosterone biosynthesis in porcine Leydig 
    cells was removed following removal of the iprodione from the cell 
    culture. It can also be noted that the rat appears to be one of the 
    most sensitive species to benign interstitial cell tumors. They are, 
    however, a very uncommon tumor type in humans. It is evident that the 
    rat is much more sensitive to chemical insult of the Leydig cells than 
    is man and, consequently, that humans are at less risk for Leydig cell 
    testicular tumors than rats. This implies that the threshold dose for 
    humans would be greater than for rats (See C. C. Capen, Leydig Cell 
    Tumors: Pathology, Physiology, and Mechanistic Considerations in Rats, 
    The Toxicology Forum, 1994 Annual Summer Meeting, p. 110).
    
    [[Page 3694]]
    
        d. Hepatotoxicity and carcinogenicity in male and female mice. In 
    the mouse oncogenicity study, the development of hepatocellular tumors 
    in mice appeared secondary to hepatic toxicity at a dose level at which 
    body weight gain was severely reduced indicating that the MTD was 
    probably exceeded (over the duration of the study, weight gain was 
    reduced 14% and 11% in high dose males and females respectively. During 
    weeks 18 to 45, weight gain was reduced 44% and 47%, respectively. This 
    severity of the weight gain decrement is compounded by the fact that 
    the livers in these animals weighed more than double their respective 
    controls, i.e., the weight gain decrement is even more serious than the 
    body weights alone would indicate). The animals at the highest dose 
    level, and to a lesser extent, the mid-dose group, exhibited signs of 
    liver toxicity, including increased liver weights, hepatocytic 
    hypertrophy, enlarged eosinophilic hepatocytes, pigmented macrophages, 
    centrilobular necrosis, amyloid deposits, and statistically significant 
    increases in levels of the liver enzymes GPT and GOT. Clear NOELs exist 
    for these effects. In a recently completed 14-day toxicity study in 
    male mice, dose levels similar to those at which tumors were observed 
    in the mouse carcinogenicity study induced a number of hepatic changes 
    including the induction of Cytochrome P450 isoenzymes and cellular 
    proliferation.
        The HED Carcinogenicity Peer Review Committee (CPRC) met in 1994 
    and determined that iprodione should be classified a group B2 
    carcinogen. The CPRC recommended that a low dose quantitative risk 
    assessment for iprodione be estimated from the benign rat interstitial 
    cell tumors of the testes, and also from the mouse male and female 
    liver tumors separately. It is the opinion of Rhone-Poulenc that the B2 
    classification as well as the use of low dose quantitative risk 
    assessment for iprodione is inappropriate.
        The male interstitial cell tumors seen only at the high dose in the 
    lifetime rat study with iprodione were due to a mode of action with a 
    clear threshold. This conclusion is based on the following rationale: 
    (i) The tumors were benign and only observed at a dose level at or 
    above the MTD, (ii) the mechanistic toxicological research designed to 
    elucidate the biochemical mode of action, and (iii) the consensus of 
    scientific experts that benign Leydig cell tumors in the rat are not 
    useful predictors of human disease. Thus, because the mechanism of 
    action shows a clear threshold, and because the potential toxicological 
    hazard has no direct relevance for human health, Rhone-Poulenc believes 
    that the dose response assessment for the benign interstitial cell 
    effects in the rat testes should rely on threshold, non-linear, margin 
    of exposure procedures and not on linear low dose extrapolations.
        The mouse liver tumors also arose from a toxicological mechanism 
    having a clear threshold. A study conducted to elucidate the mode of 
    action of the mouse liver tumorigenesis has been described above. The 
    relationship between hormonally active compounds and the etiology of 
    mouse liver cancer is well established. Rhone-Poulenc therefore 
    contends that a complete evaluation of the carcinogenicity issue 
    indicates that iprodione is a threshold carcinogen acting through a 
    non-genotoxic mechanism of toxicity. The application of a low dose 
    quantitative risk assessment for iprodione is inappropriate. Rhone-
    Poulenc therefore recommends the use of an uncertainty factor approach 
    and a RfD of 0.0725 mg/kg/day.
        6. Teratology rat--a. The embryo/fetal toxicity and teratogenicity 
    of iprodione were evaluated in Sprague-Dawley rats at oral (gavage) 
    dose levels of 40, 90, or 200 mg/kg/day. Iprodione showed no 
    embryotoxicity or teratogenicity at any of the dose levels examined. 
    Although no maternal effects were detected at any treatment level in 
    the definitive study, dose selection was justified from the pilot study 
    in which maternal toxicity was noted at 120 and 240 mg/kg/day. In 
    addition, an increase in the average number of late resorptions per 
    litter was observed at 240 mg/kg/day. A clear and conservative 
    developmental and maternal NOEL was observed at 90 mg/kg/day.
        b. Rabbit. The embryo/fetal toxicity and teratogenicity of 
    iprodione were evaluated in rabbits at oral (gavage) dose levels of 20, 
    60, or 200 mg/kg/day. No treatment-related embryotoxicity or 
    teratogenicity was noted at doses of 20 or 60 mg/kg/day. Even though 
    iprodione at 200 mg/kg/day was too maternally toxic for a complete 
    teratologic evaluation, no malformations were observed in the fetuses 
    examined from this group. The developmental NOEL was 60 mg/kg/day and 
    the maternal NOEL was 20 mg/kg/day based decreases in maternal body 
    weight gain.
        Conclusion. Based on the studies cited above, iprodione is not a 
    developmental toxicant.
        7. Reproductive effects. In a multi-generation study, iprodione was 
    administered to male and female Sprague-Dawley rats via dietary 
    admixture at dose levels of 300, 1,000, or 2,000/3,000 ppm (for males 
    18.5, 61.4, and 154.8 mg/kg/day and for females 22.49, 76.2, and 201.2 
    mg/kg/day, respectively). It was necessary to reduce the high dose from 
    3,000 to 2,000 ppm following the first mating period of the F1 parents 
    owing to excessive toxicity. No effects on reproductive performance 
    were observed at any of the treatment levels. Parental toxicity, as 
    evidenced by reduced body weight, body weight gain and food consumption 
    was observed at dietary levels of 1,000 ppm and higher. Effects on pup 
    viability and pup weight were noted at 2,000/3,000 ppm. The NOELs for 
    parental and offspring toxicity were 300 ppm and 1,000 ppm, 
    respectively.
        Conclusion. Based on the study cited above, Rhone-Poulenc believes 
    that iprodione is not a reproductive toxicant.
        8. Neurotoxicity. Iprodione does not have a chemical function 
    associated with neurotoxicity. No neurotoxic symptoms have been 
    recorded in any toxicity study conducted with iprodione. Iprodione is 
    therefore not considered to be a neurotoxin.
    
    B. Aggregate Exposure
    
        In addition to dietary exposure, the FQPA lists three potential 
    sources of exposure to the general population that must be addressed. 
    These are pesticides in drinking water, exposure from non-occupational 
    sources, and the potential cumulative effect of pesticides with similar 
    toxicological modes of action.
        1. Drinking water. Iprodione, applied according to labeled use and 
    good agricultural management practices, is predicted and demonstrated 
    to present no significant, if any, concentrations in drinking water 
    sources. Iprodione's physical-chemical properties and actual measured 
    environmental concentrations in field dissipation/monitoring studies 
    provides support for this conclusion. There is no established Maximum 
    Concentration Level or Health Advisory Level for iprodione under the 
    Safe Drinking Water Act.
        2. Non-occupational exposure discussion. Iprodione is included in a 
    number of formulations used for professional treatment of golf-courses 
    and turf. Posting and notification procedures ensure that there is no 
    exposure to the general public either during or following treatment.
        A single granular formulation containing low quantities of 
    iprodione (1.02%) is available to the homeowner for use on residential 
    ornamentals and lawns. Treatment rates (1.25 oz a.i./2,500 - 5,000 sq. 
    ft.) and the number of treatments allowed per year (2-3 max.) are low. 
    Rhone-Poulenc believes that
    
    [[Page 3695]]
    
    this minor use will not impact significantly on the aggregate exposure 
    to iprodione since it represents less than 4% of total iprodione use. 
    Two formulations are registered for home and garden use but they have 
    not been commercialized. They therefore do not need to be included in 
    the aggregate exposure risk estimate for iprodione.
        Conclusion. Rhone-Poulenc does not expect that the ornamental and 
    turf uses add significantly to the aggregate exposure for iprodione; 
    thus, dietary exposure is the main consideration for risk assessment 
    purposes.
        3. Common mechanism of action discussion. Risk assessment based on 
    exposure to multiple chemicals is not appropriate for the following 
    reasons:
         Similar toxicological end-points may be induced by a 
    number of different mechanisms of action that are unlikely to be 
    additive.
         Toxicological end-points for RfD setting may be different 
    even between chemicals acting via a common mechanism.
         Margins between NOELs and LELs may be large and variable 
    from chemical to chemical.
         Multiple chemical dietary exposures are low and 
    infrequent.
         For a majority of chemicals insufficient or incomplete 
    data is available to identify a common mechanism of action.
        However, the Agency has previously noted both structural and 
    toxicological similarities between iprodione, procymidone, and 
    vinclozolin. There are clear differences in both the type and magnitude 
    of effects observed after exposure to iprodione in contrast to 
    vinclozolin and procymidone. In multi-generation studies, iprodione had 
    no adverse effects on reproductive performance, fertility, fecundity, 
    or sex ratio, even at dose levels that induced dramatic parental 
    toxicity. However in similar types of studies, procymidone induced 
    adverse effects on fertility and abnormalities of male sex organs and 
    vinclozolin induced infertility, genital and reproductive tract 
    malformations and pseudohermaphroditism in male rats.
        Vinclozolin and procymidone are known to exert their endocrine 
    effects via a blockage of the androgen receptor in a similar way to the 
    potent anti-androgen flutamide (Hosokawa et al, 1993a and 1993b, Kelce 
    et al, 1994). By contrast, iprodione has poor binding affinity to the 
    androgen receptor and the primary lesion appears to be a blockage of 
    testosterone biosynthesis and secretion in a similar manner to 
    ketoconazole; a therapeutic agent that also has no effects on fertility 
    or fecundity (Heckman et al, 1992). Subsequently, iprodione only 
    appears to induce transient changes in plasma hormone levels until 
    compensatory mechanisms take effect. Consequently, iprodione does not 
    possess the potent anti-androgenic activity of flutamide (or its 
    structural analogs).
        Conclusion. Therefore, Rhone-Poulenc believes that consideration of 
    a common mechanism of toxicity is not appropriate at this time since 
    there are no reliable data to indicate that the toxic effects caused by 
    iprodione would be cumulative with those of any other compound. Based 
    on this point, Rhone-Poulenc has considered only the potential risks of 
    iprodione in its exposure assessment.
    
    C. Safety Determination
    
        1. DRES-U.S. population-infants-children (1-6 yrs old). According 
    to EPA's Dietary Risk Evaluation System (DRES) chronic analysis, the % 
    RfD falls within a safe margin even when considering tolerance levels 
    and 100% crop treated. For the overall U.S. population, dietary 
    exposure to iprodione uses 0.353% of the RfD when using Anticipated 
    Residue Contribution (ARC) or 54.22 % of the RfD when using tolerance 
    levels. Exposure to iprodione resulting from the use of the product on 
    tangelos and tangerines is negligible considering the low residues and 
    limited acreage covered in the EUP (maximum of 4,000 acres). Dietary 
    contribution from tangerines and tangelos accounts for less than 1% of 
    total exposure and the cancer risk for these uses is estimated to be 
    less than 5 x 10-8.
        A DRES detailed acute exposure analysis was performed by EPA using 
    conservative values. The resulting high end Margin of Exposure value of 
    100 for the DRES subgroup of concern (females 13 + years) is above the 
    acceptable level and demonstrates no acute dietary concern.
        For the reasons stated earlier (see Unit A.5.) Rhone-Poulenc 
    considers the use of a low dose quantitative risk assessment for 
    iprodione to be inappropriate. As previously indicated Rhone-Poulenc 
    recommends the use of a safety factor approach and a RfD of 0.0725 mg/
    kg/day. The use the Q* (Q star) value of 0.0439 (mg/kg/day)-1 
    previously calculated by EPA represents a very conservative estimate of 
    the lifetime cancer risk from potential residues of iprodione.
        Nevertheless, an assessment of the lifetime cancer risk from 
    iprodione residues in food using a Q* value of 0.0439 (mg/kg/day)-
    1 has been conducted. This assessment indicates the total cancer risk 
    to be in the de minimus range of 10-6, even with a very 
    conservative Q* value. Based on results of the analyses, iprodione 
    residues in currently registered foods would not be expected to result 
    in significant levels of chronic toxicity to any segment of the U.S. 
    population. The upper bound cancer risk attributed to the use of 
    iprodione on tangerines and tangelos is calculated to be negligible. 
    Therefore, the added use will not measurably increase the cancer risk 
    estimate for any population subgroup.
        2. Infants and children-adequate margin of safety. In assessing the 
    potential for additional sensitivity of infants and children to 
    residues of iprodione the available teratology and reproductive 
    toxicity studies and the potential for endocrine modulation by 
    iprodione were considered.
        Developmental studies in two species indicate that iprodione has no 
    teratogenic potential, even at maternally toxic dose levels. Maternal 
    and developmental NOELs and lowest observed effect levels (LOELs) were 
    generally comparable indicating no increased susceptibility of 
    developing organisms. Multi-generation rodent reproduction studies 
    indicated that iprodione has no adverse effects on reproductive 
    performance, fertility, fecundity, or sex ratio. Effects on pup weight 
    and viability were only noted in the presence of severe parental 
    toxicity.
        The mechanism of endocrine modulation associated with iprodione 
    (inhibition of testosterone biosynthesis) appears to be distinct from 
    that of anti-androgens acting at the level of the androgen receptor and 
    may help to explain the lack of adverse effects on reproductive 
    function observed with iprodione.
        Therefore, based upon the completeness and reliability of the 
    toxicity data and the conservative exposure assessment, Rhone-Poulenc 
    believes that there is a reasonable certainty that no harm will result 
    to infants and children from exposure to residues of iprodione and no 
    additional uncertainty factor is warranted.
        3. Endocrine discussion and conclusion. As indicated in unit A. 5., 
    the primary lesion at the level of the target organs (testes, ovaries, 
    and adrenals) is likely to be related to an inhibition of steroid/
    androgen biosynthesis. The resulting endocrine toxic effect due to 
    iprodione is fairly moderate compared to that produced by potent 
    endocrine disruptors such as flutamide (and other structural analogs) 
    and is insufficiently potent to produce effects on reproduction or 
    development.
    
    [[Page 3696]]
    
        The increased incidence in tumors in both rats and mice was only 
    observed when animals were treated at or above the MTD. For all three 
    tumor sites (testes, liver, ovary) tumors only develop on pre-existing 
    non-neoplastic lesions (cell hypertrophy/vacuolation, hyperplasia) and 
    a clear threshold level exist for both non-neoplastic lesions and 
    tumors. Those thresholds are far in excess of those levels of iprodione 
    that the general public would be exposed to.
        Conclusion. Rhone-Poulenc believes that iprodione would not be 
    expected to induce any adverse effects related to endocrine disruption 
    in members of the general population via the consumption of food crops 
    containing residues of this compound.
    
    II. Public Record
    
        EPA invites interested persons to submit comments on this notice of 
    filing. Comments must bear a notation indicating the docket control 
    number, [PF-689].
        A record has been established for this notice of filing under 
    docket control number [PF-689] (including comments and data submitted 
    electronically as described below). A public version of this record, 
    including printed, paper versions of electronic comments, which does 
    not include any information claimed as CBI, is available for inspection 
    from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal 
    holidays. The public record is located in Room 1132 of the Public 
    Response and Program Resources Branch, Field Operations Division 
    (7506C), Office of Pesticide Programs, Environmental Protection Agency, 
    Crystal Mall #2, 1921 Jefferson Davis Highway, Arlington, VA.
        Electronic comments can be sent directly to EPA at:
        opp-docket@epamail.epa.gov
    
    
        Electronic comments must be submitted as ASCII file avoiding the 
    use of special characters and any form of encryption.
        The official record for this notice of filing, as well as the 
    public version, as described above will be kept in paper form. 
    Accordingly, EPA will transfer all comments received electronically 
    into printed, paper form as they are received and will place the paper 
    copies in the official rulemaking record which will also include all 
    comments submitted directly in writing. The official rulemaking record 
    is the paper record maintained at the address in ``ADDRESSES'' at the 
    beginning of this document.
    
    List of Subjects
    
        Environmental protection, Administrative practice and procedure, 
    Agricultural commodities, Pesticides and pests, Reporting and 
    recordkeeping requirements.
    
        Dated: January 15, 1997.
    
    Stephen L. Johnson,
    
    Director, Registration Division, Office of Pesticide Programs.
    
    [FR Doc. 97-1752 Filed 1-23-97; 8:45 am]
    BILLING CODE 6560-50-F
    
    
    

Document Information

Published:
01/24/1997
Department:
Environmental Protection Agency
Entry Type:
Notice
Action:
Notice of filing.
Document Number:
97-1752
Dates:
Comments, identified by the docket control number [PF-689], must be received on or before, February 24, 1997.
Pages:
3691-3696 (6 pages)
Docket Numbers:
PF-689, FRL-5582-7
PDF File:
97-1752.pdf