2020-27225. Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Naval Base San Diego Pier 6 Replacement Project, San Diego, California  

  • Start Preamble

    AGENCY:

    National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

    ACTION:

    Notice; proposed incidental harassment authorization; request for comments on proposed authorization and possible renewal.

    SUMMARY:

    NMFS has received a request from the U.S. Navy (Navy) for authorization to take marine mammals incidental to the Naval Base San Diego Pier 6 Replacement Project in San Diego, California. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on its proposal to issue an incidental harassment authorization (IHA) to incidentally take marine mammals during the specified activities. NMFS is also requesting comments on a possible one-year renewal that could be issued under certain circumstances and if all requirements are met, as described in Request for Public Comments at the end of this notice. NMFS will consider public comments prior to making any final decision on the issuance of the requested MMPA authorizations and agency responses will be summarized in the final notice of our decision.

    DATES:

    Comments and information must be received no later than January 11, 2021.

    ADDRESSES:

    Comments should be addressed to Jolie Harrison, Chief, Permits and Conservation Division, Office of Protected Resources, National Marine Fisheries Service and should be sent to ITP.Meadows@noaa.gov.

    Instructions: NMFS is not responsible for comments sent by any other method, to any other address or individual, or received after the end of the comment period. Comments received electronically, including all attachments, must not exceed a 25-megabyte file size. Attachments to electronic comments will be accepted in Microsoft Word or Excel or Adobe PDF file formats only. All comments received are a part of the public record and will generally be posted online at https://www.fisheries.noaa.gov/​permit/​incidental-take-authorizations-under-Start Printed Page 80028marine-mammal-protection-act without change. All personal identifying information (e.g., name, address) voluntarily submitted by the commenter may be publicly accessible. Do not submit confidential business information or otherwise sensitive or protected information.

    Start Further Info

    FOR FURTHER INFORMATION CONTACT:

    Dwayne Meadows, Ph.D., Office of Protected Resources, NMFS, (301) 427-8401. Electronic copies of the application and supporting documents, as well as a list of the references cited in this document, may be obtained online at: https://www.fisheries.noaa.gov/​permit/​incidental-take-authorizations-under-marine-mammal-protection-act. In case of problems accessing these documents, please call the contact listed above.

    End Further Info End Preamble Start Supplemental Information

    SUPPLEMENTARY INFORMATION:

    Background

    The MMPA prohibits the “take” of marine mammals, with certain exceptions. Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq.) direct the Secretary of Commerce (as delegated to NMFS) to allow, upon request, the incidental, but not intentional, taking of small numbers of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within a specified geographical region if certain findings are made and either regulations are issued or, if the taking is limited to harassment, a notice of a proposed incidental take authorization may be provided to the public for review.

    Authorization for incidental takings shall be granted if NMFS finds that the taking will have a negligible impact on the species or stock(s) and will not have an unmitigable adverse impact on the availability of the species or stock(s) for taking for subsistence uses (where relevant). Further, NMFS must prescribe the permissible methods of taking and other “means of effecting the least practicable adverse impact” on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stocks for taking for certain subsistence uses (referred to in shorthand as “mitigation”); and requirements pertaining to the mitigation, monitoring and reporting of the takings are set forth.

    The definitions of all applicable MMPA statutory terms cited above are included in the relevant sections below.

    National Environmental Policy Act

    To comply with the National Environmental Policy Act of 1969 (NEPA; 42 U.S.C. 4321 et seq.) and NOAA Administrative Order (NAO) 216-6A, NMFS must review our proposed action (i.e., the issuance of an IHA) with respect to potential impacts on the human environment.

    This action is consistent with categories of activities identified in Categorical Exclusion B4 (IHAs with no anticipated serious injury or mortality) of the Companion Manual for NOAA Administrative Order 216-6A, which do not individually or cumulatively have the potential for significant impacts on the quality of the human environment and for which we have not identified any extraordinary circumstances that would preclude this categorical exclusion. Accordingly, NMFS has preliminarily determined that the issuance of the proposed IHA qualifies to be categorically excluded from further NEPA review.

    We will review all comments submitted in response to this notice prior to concluding our NEPA process or making a final decision on the IHA request.

    Summary of Request

    On July 14, 2020, NMFS received an application from the Navy requesting an IHA to take small numbers of California sea lions incidental to pile driving and removal associated with the Naval Base San Diego Pier 6 Replacement Project. The application was deemed adequate and complete on November 25, 2020. The Navy's request is for take of a small number of California sea lions by Level B harassment. Neither the Navy nor NMFS expects serious injury or mortality to result from this activity, and therefore, an IHA is appropriate.

    Description of Proposed Activity

    Overview

    The purpose of the project is to remove and replace a decaying and inadequate pier for Navy ships. Specifically, in-water construction work includes removing the existing pier (by vibratory pile extraction, water jetting, hydraulic underwater chainsaw, direct pulling, and/or pile clippers) consisting of a total of 1,998 12 to 24-inch piles, after removing above water structures and utilities. Once demolition has opened up space, construction will begin in the same location on a new pier measuring 37 m (120 ft) wide by 457 m (1,500 ft) long. New construction work involves impact driving of 966 piles. This includes 528 24-inch structural concrete piles, 208 24-inch concrete fender piles, 4 20-inch piles for a load-out ramp, and 226 16-inch fiberglass secondary and corner fender piles. Pile driving/removal is expected to take no more than 250 days. Pile driving would be by vibratory pile driving until resistance is too great and driving would switch to an impact hammer.

    The pile driving/removal can result in take of marine mammals from sound in the water which results in behavioral harassment or auditory injury.

    Dates and Duration

    The work described here is scheduled for October 1, 2021 through September 30, 2022. In-water activities are planned for daylight hours only.

    Specific Geographic Region

    The activities would occur in the south-central portion of San Diego Bay (Figure 1). San Diego Bay is a narrow, crescent-shaped natural embayment oriented northwest-southeast with an approximate length of 24 kilometers (km) (15 miles (mi)) and a total area of roughly 4 km2 (11,000 acres; Port of San Diego, 2007). The width of the Bay ranges from 0.3 to 5.8 km (0.2 to 3.6 mi), and depths range from 23 m (74 ft) Mean Lower Low Water (MLLW) near the tip of Ballast Point to less than 1.2 m (4 ft) at the southern end (Merkel and Associates, Inc., 2009). Approximately half of the Bay is less than 4.5 meters (m) (15 feet (ft)) deep and much of it is less than 15 m (50 ft) deep (Merkel and Associates, Inc., 2009). The northern and central portions of the Bay have been shaped by historical dredging and filling to support large ship navigation and shoreline development. The United States Army Corps of Engineers dredges the main navigation channel in the Bay to maintain a depth of 14 m (47 ft) MLLW and is responsible for providing safe transit for private, commercial, and military vessels within the bay (NOAA 2012). Outside of the navigation channel, the bay floor consists of platforms at depths that vary slightly (Merkel and Associates, Inc., 2009). Within the Central Bay, typical depths range from 10.7-11.6 m (35-38 ft) MLLW to support large ship turning and anchorage, and small vessel marinas are typically dredged to depths of 4.6 m (15 ft) MLLW (Merkel and Associates, Inc., 2009).

    Start Printed Page 80029

    San Diego Bay is heavily used by commercial, recreational, and military vessels, with an average of 82,413 vessel movements (in or out of the Bay) per year (approximately 225 vessel transits per day), a majority of which are presumed to occur during daylight hours. This number of transits does not include recreational boaters that use San Diego Bay, estimated to number 200,000 annually (San Diego Harbor Safety Committee, 2009). Background (ambient) noise in the south-central San Diego Bay averaged 126 decibels (dB) in 2019 (Dahl and Dall'Osto 2019). Noise from non-impulsive sources associated with the proposed activities is, therefore assumed to become indistinguishable from background noise as it diminishes to 126 dB re: 1 micropascal (µPa) with distance from the source (Dahl and Dall'Osto, 2019).

    Section 2.2 of the application provides extensive additional details about the project area.

    Detailed Description of Specific Activity

    The purpose of the project is to remove and replace a decaying and inadequate pier built in 1945 that is now too narrow, structurally weakened and decaying. A new, wider pier is needed to provide adequate ship berthing infrastructure to support modern Navy ships and fleet readiness. The Navy will abate any hazardous materials, and then disconnect and remove all utilities and mechanical equipment from the old pier. After the old pier deck and associated structures are removed, the exiting 1,998 in-water piles will be removed. Existing piles include 1,833 20 or 24-inch concrete piles, 149 12-inch timber-plastic composite piles, and 16 16-inch steel I piles (Table 1). Workers would initially attempt to remove the piles by dead-pull with or without water jetting the pile (where an external high-pressure water jet is used to loosen the sediment around the pile). A vibratory hammer may also be used to loosen the piles prior to removal. If a pile cannot be removed by these methods, workers would use a hydraulic cutter or underwater hydraulic chainsaw to cut the piles at the mudline. Once the piles are cut, a crane would remove the pile and set it onto a barge for transport to a concrete processing yard. The Navy expects to be able to remove up to 8 piles per day, meaning 250 days of work will be required to remove all old piles.

    Once demolition has opened up space, construction will begin in the same location on the new pier. New construction work involves vibratory and impact driving of 966 piles (Table Start Printed Page 800301). This includes 528 24-inch structural concrete piles, 208 24-inch concrete fender piles, 4 20-inch piles for a load-out ramp, and 226 16-inch fiberglass secondary and corner fender piles. Pile driving/removal is expected to take no more than 250 days. Pile driving would be by impact hammer only. The total length of the piles would range from approximately 26 m (85 ft) (fender piles) to 34 m (110 ft) (structural piles); the length of the portion of the piles in the water column would range from approximately 3 to 9 m (10 to 30 ft), depending on pile type, location, and tide. The Navy estimates they will install 7 piles per day, meaning in-water construction will take 138 days.

    It is anticipated that overlap between demolition and installation activities would occur over the 250-day project period. Pile removal would begin on day 1 while pile installation is anticipated to begin after removal of one third of the piles (after approximately 83 days of pile removal). Pile installation is expected to periodically occur alongside ongoing pile removal activities over 138 days of the remaining 167 project days of pile removal. Because pile installation cannot continue where demolition activities are incomplete, there would be 29 days (167 days—138 days of pile installation) where only pile removal would occur after pile installation has started. In summary, the 250-day project period would include 112 days of pile removal-only activities and 138 days of concurrent pile removal and installation activities. There may be simultaneous use of no more than two of the various pile extraction methods (pile clippers, water jetting, underwater chainsaws or vibratory pile removal) during pile removal.

    The pile driving equipment will be deployed and operated from barges, on water. Materials will be delivered on barges.

    Table 1—Summary of Pile Driving Activities

    MethodPile typeNumber of pilesPiles/dayTotal estimated days
    Demolition of Existing Pier
    Vibratory Extraction High-pressure Water Jetting Hydraulic Pile Clipper Hydraulic Chainsaw24-inch square pre-cast concrete, 20-inch square pre-stressed/pre-cast concrete piles1,8338250
    12-inch composite (timber-plastic) piles149
    Vibratory Extraction16-inch I-shaped steel piles16
    Total1,998
    Construction of New Pier
    Impact Pile Driving24-inch octagonal concrete structural test piles157138
    24-inch octagonal concrete structural piles513
    24-inch square concrete fender system test piles4
    24-inch square concrete primary fender piles204
    20-inch square concrete pile for load-out ramp cradle4
    16-inch fiberglass secondary and corner fender piles226
    High-pressure Water Jetting20- and 24-inch concrete pilesWithin Above Counts
    Total966

    Proposed mitigation, monitoring, and reporting measures are described in detail later in this document (please see Proposed Mitigation and Proposed Monitoring and Reporting).

    Description of Marine Mammals in the Area of Specified Activities

    Sections 3 and 4 of the application summarize available information regarding status and trends, distribution and habitat preferences, and behavior and life history, of the potentially affected species. Additional information regarding population trends and threats may be found in NMFS's Stock Assessment Reports (SARs; https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-stock-assessments) and more general information about these species (e.g., physical and behavioral descriptions) may be found on NMFS's website (https://www.fisheries.noaa.gov/​find-species).

    Table 2 lists all species with expected potential for occurrence in the project area in San Diego Bay and summarizes information related to the population or stock, including regulatory status under the MMPA and Endangered Species Act (ESA) and potential biological removal (PBR), where known. For taxonomy, we follow Committee on Taxonomy (2020). PBR is defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population (as described in NMFS's SARs). While no mortality is anticipated or authorized here, PBR and annual serious injury and mortality from anthropogenic sources are included here Start Printed Page 80031as gross indicators of the status of the species and other threats.

    Marine mammal abundance estimates presented in this document represent the total number of individuals that make up a given stock or the total number estimated within a particular study or survey area. NMFS's stock abundance estimates for most species represent the total estimate of individuals within the geographic area, if known, that comprises that stock. For some species, this geographic area may extend beyond U.S. waters. All managed stocks in this region are assessed in NMFS's U.S. Pacific SARs (e.g., Caretta et al., 2020).

    Table 2—Species That Spatially Co-Occur With the Activity to the Degree That Take Is Reasonably Likely to Occur

    Common nameScientific nameStockESA/ MMPA status; Strategic (Y/N) 1Stock abundance (CV, Nmin, most recent abundance survey) 2PBRAnnual M/SI3
    Order Carnivora—Superfamily Pinnipedia
    Family Otariidae (eared seals and sea lions):
    California Sea LionZalophus californianusUnited States-, -, N257,606 (N/A, 233,515, 2014)14,011>321
    1—Endangered Species Act (ESA) status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed under the ESA or designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality exceeds PBR or which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed under the ESA is automatically designated under the MMPA as depleted and as a strategic stock.
    2—NMFS marine mammal stock assessment reports online at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-stock-assessments. CV is coefficient of variation; Nmin is the minimum estimate of stock abundance.
    3—These values, found in NMFS's SARs, represent annual levels of human-caused mortality plus serious injury from all sources combined (e.g., commercial fisheries, ship strike). Annual M/SI often cannot be determined precisely and is in some cases presented as a minimum value or range. A CV associated with estimated mortality due to commercial fisheries is presented in some cases.

    California sea lions (Zalophus californianus) spatially co-occur with the activity to the degree that take is reasonably likely to occur, and we have proposed authorizing take of this species. Other marine mammal species observed in San Diego Bay are the coastal bottlenose dolphin (Tursiops truncatus), which is regularly seen in the North Bay; Pacific harbor seal (Phoca vitulina), which frequently enters the North Bay; and common dolphins (Delphinus spp.), which are rare visitors in the North Bay. Gray whales (Eschrichtius robustus) are occasionally sighted near the mouth of San Diego Bay during their winter migration (Naval Facilities Engineering Command, Southwest and Port of San Diego Bay, 2013). Based on many years of observations and numerous Navy-funded surveys in San Diego Bay (Merkel and Associates, Inc., 2008; Sorensen and Swope, 2010; Graham and Saunders, 2014; Tierra Data Inc., 2016), these other marine mammals rarely occur south of the Coronado Bay Bridge, are not known to occur near Naval Base San Diego, and any occurrence in the project area would be very rare. Therefore, while coastal bottlenose dolphins, Pacific harbor seals, common dolphins, and gray whales have been reported in San Diego Bay, they are not anticipated to occur in the project area and no take of these species is anticipated or proposed to be authorized.

    California Sea Lion

    California sea lions occur from Vancouver Island, British Columbia, to the southern tip of Baja California. Sea lions breed on the offshore islands of southern and central California from May through July (Heath and Perrin, 2008). During the non-breeding season, adult and subadult males and juveniles migrate northward along the coast to central and northern California, Oregon, Washington, and Vancouver Island (Jefferson et al., 1993). They return south the following spring (Heath and Perrin 2008, Lowry and Forney 2005). Females and some juveniles tend to remain closer to rookeries (Antonelis et al., 1990; Melin et al., 2008).

    Pupping occurs primarily on the California Channel Islands from late May until the end of June (Peterson and Bartholomew 1967). Weaning and mating occur in late spring and summer during the peak upwelling period (Bograd et al., 2009). After the mating season, adult males migrate northward to feeding areas as far away as the Gulf of Alaska (Lowry et al., 1992), and they remain away until spring (March-May), when they migrate back to the breeding colonies. Adult females generally remain south of Monterey Bay, California throughout the year, feeding in coastal waters in the summer and offshore waters in the winter, alternating between foraging and nursing their pups on shore until the next pupping/breeding season (Melin and DeLong, 2000; Melin et al., 2008).

    In San Diego Bay, California sea lions regularly occur on rocks, buoys and other structures, and especially on bait barges. California sea lion occurrence in the project area is expected to be rare based on sighting of only two individuals in the water off of Navy Base San Diego during one 2010 survey (Sorensen and Swope, 2010). Different age classes of California sea lions are found in the San Diego region throughout the year (Lowry et al., 1991). Although adult male California sea lions feed in areas north of San Diego, animals of all other ages and sexes spend most, but not all, of their time feeding at sea during winter. During warm-water months, a high proportion of the adult males and females are hauled-out at terrestrial sites.

    Marine Mammal Hearing

    Hearing is the most important sensory modality for marine mammals underwater, and exposure to anthropogenic sound can have deleterious effects. To appropriately assess the potential effects of exposure to sound, it is necessary to understand the frequency ranges marine mammals are able to hear. Current data indicate that not all marine mammal species have equal hearing capabilities (e.g., Richardson et al., 1995; Wartzok and Start Printed Page 80032Ketten, 1999; Au and Hastings, 2008). To reflect this, Southall et al. (2007) recommended that marine mammals be divided into functional hearing groups based on directly measured or estimated hearing ranges on the basis of available behavioral response data, audiograms derived using auditory evoked potential techniques, anatomical modeling, and other data. Note that no direct measurements of hearing ability have been successfully completed for mysticetes (i.e., low-frequency cetaceans). Subsequently, NMFS (2018) described generalized hearing ranges for these marine mammal hearing groups. Generalized hearing ranges were chosen based on the approximately 65 decibel (dB) threshold from the normalized composite audiograms, with the exception for lower limits for low-frequency cetaceans where the lower bound was deemed to be biologically implausible and the lower bound from Southall et al. (2007) retained. Marine mammal hearing groups and their associated hearing ranges are provided in Table 3.

    Table 3—Marine Mammal Hearing Groups

    [NMFS, 2018]

    Hearing groupGeneralized hearing range *
    Low-frequency (LF) cetaceans (baleen whales)7 Hz to 35 kHz.
    Mid-frequency (MF) cetaceans (dolphins, toothed whales, beaked whales, bottlenose whales)150 Hz to 160 kHz.
    High-frequency (HF) cetaceans (true porpoises, Kogia, river dolphins, cephalorhynchid, Lagenorhynchus cruciger & L. australis)275 Hz to 160 kHz.
    Phocid pinnipeds (PW) (underwater)(true seals)50 Hz to 86 kHz.
    Otariid pinnipeds (OW) (underwater)(sea lions and fur seals)60 Hz to 39 kHz.
    * Represents the generalized hearing range for the entire group as a composite (i.e., all species within the group), where individual species' hearing ranges are typically not as broad. Generalized hearing range chosen based on ~65 dB threshold from normalized composite audiogram, with the exception for lower limits for LF cetaceans (Southall et al., 2007) and PW pinniped (approximation).

    The pinniped functional hearing group was modified from Southall et al. (2007) on the basis of data indicating that phocid species have consistently demonstrated an extended frequency range of hearing compared to otariids, especially in the higher frequency range (Hemilä et al., 2006; Kastelein et al., 2009; Reichmuth and Holt, 2013).

    For more detail concerning these groups and associated frequency ranges, please see NMFS (2018) for a review of available information. California sea lions are in the otariid family group.

    Potential Effects of Specified Activities on Marine Mammals and their Habitat

    This section includes a summary and discussion of the ways that components of the specified activity may impact marine mammals and their habitat. The Estimated Take section later in this document includes a quantitative analysis of the number of individuals that are expected to be taken by this activity. The Negligible Impact Analysis and Determination section considers the content of this section, the Estimated Take section, and the Proposed Mitigation section, to draw conclusions regarding the likely impacts of these activities on the reproductive success or survivorship of individuals and how those impacts on individuals are likely to impact marine mammal species or stocks.

    Acoustic effects on marine mammals during the specified activity can occur from vibratory and impact pile driving/removal and underwater chainsaws, pile clippers and water jetting. The effects of underwater noise from the Navy's proposed activities have the potential to result in Level A or Level B harassment of marine mammals in the action area.

    Description of Sound Sources

    The marine soundscape is comprised of both ambient and anthropogenic sounds. Ambient sound is defined as the all-encompassing sound in a given place and is usually a composite of sound from many sources both near and far (ANSI 1994, 1995). The sound level of an area is defined by the total acoustical energy being generated by known and unknown sources. These sources may include physical (e.g., waves, wind, precipitation, earthquakes, ice, atmospheric sound), biological (e.g., sounds produced by marine mammals, fish, and invertebrates), and anthropogenic sound (e.g., vessels, dredging, aircraft, construction).

    The sum of the various natural and anthropogenic sound sources at any given location and time—which comprise “ambient” or “background” sound—depends not only on the source levels (as determined by current weather conditions and levels of biological and shipping activity) but also on the ability of sound to propagate through the environment. In turn, sound propagation is dependent on the spatially and temporally varying properties of the water column and sea floor, and is frequency-dependent. As a result of the dependence on a large number of varying factors, ambient sound levels can be expected to vary widely over both coarse and fine spatial and temporal scales. Sound levels at a given frequency and location can vary by 10-20 dB from day to day (Richardson et al., 1995). The result is that, depending on the source type and its intensity, sound from the specified activity may be a negligible addition to the local environment or could form a distinctive signal that may affect marine mammals.

    In-water construction activities associated with the project would include impact pile driving and vibratory pile removal as well as water jetting, underwater chainsaws, and pile clippers. The sounds produced by these activities fall into one of two general sound types: Impulsive and non-impulsive. Impulsive sounds (e.g., explosions, gunshots, sonic booms, impact pile driving) are typically transient, brief (less than 1 second), broadband, and consist of high peak sound pressure with rapid rise time and rapid decay (ANSI, 1986; NIOSH, 1998; ANSI, 2005; NMFS, 2018). Non-impulsive sounds (e.g., machinery operations such as drilling or dredging, vibratory pile driving, water jetting, chainsaws, pile clippers, and active sonar systems) can be broadband, narrowband or tonal, brief or prolonged (continuous or intermittent), and typically do not have the high peak sound pressure with raid rise/decay time that impulsive sounds do (ANSI 1995; NIOSH 1998; NMFS 2018). The distinction between these two sound types is important because they have differing potential to cause physical effects, particularly with regard to hearing (e.g., Ward 1997 in Southall et al., 2007).Start Printed Page 80033

    Two types of pile hammers would be used on this project: impact and vibratory. Impact hammers operate by repeatedly dropping a heavy piston onto a pile to drive the pile into the substrate. Sound generated by impact hammers is characterized by rapid rise times and high peak levels, a potentially injurious combination (Hastings and Popper, 2005). Vibratory hammers install piles by vibrating them and allowing the weight of the hammer to push them into the sediment. Vibratory hammers produce significantly less sound than impact hammers. Peak Sound pressure Levels (SPLs) may be 180 dB or greater, but are generally 10 to 20 dB lower than SPLs generated during impact pile driving of the same-sized pile (Oestman et al., 2009). Rise time is slower, reducing the probability and severity of injury, and sound energy is distributed over a greater amount of time (Nedwell and Edwards, 2002; Carlson et al., 2005).

    Pile clippers and underwater chainsaws are hydraulically operated equipment. A pile clipper is a large, heavy elongated horizontal guillotine-like structure that is mechanically lowered over a pile down to the mudline or substrate where hydraulic force is used to push a sharp blade to cut a pile. The underwater chainsaws are operated by SCUBA divers. Water jet systems use very high pressure jets of water to move and even cut materials. Sounds generated by this demolition equipment are non-impulsive and continuous (NAVAC Southwest, 2020)

    The likely or possible impacts of the Navy's proposed activity on marine mammals could involve both non-acoustic and acoustic stressors. Potential non-acoustic stressors could result from the physical presence of the equipment and personnel; however, any impacts to marine mammals are expected to primarily be acoustic in nature. Acoustic stressors include effects of heavy equipment operation during pile installation and removal.

    Acoustic Impacts

    The introduction of anthropogenic noise into the aquatic environment from pile driving and removal and the various demolition equipment is the primary means by which marine mammals may be harassed from the Navy's specified activity. In general, animals exposed to natural or anthropogenic sound may experience physical and psychological effects, ranging in magnitude from none to severe (Southall et al., 2007). Generally, exposure to pile driving and removal and other construction noise has the potential to result in auditory threshold shifts and behavioral reactions (e.g., avoidance, temporary cessation of foraging and vocalizing, changes in dive behavior). Exposure to anthropogenic noise can also lead to non-observable physiological responses such an increase in stress hormones. Additional noise in a marine mammal's habitat can mask acoustic cues used by marine mammals to carry out daily functions such as communication and predator and prey detection. The effects of pile driving and demolition noise on marine mammals are dependent on several factors, including, but not limited to, sound type (e.g., impulsive vs. non-impulsive), the species, age and sex class (e.g., adult male vs. mom with calf), duration of exposure, the distance between the pile and the animal, received levels, behavior at time of exposure, and previous history with exposure (Wartzok et al., 2004; Southall et al., 2007). Here we discuss physical auditory effects (threshold shifts) followed by behavioral effects and potential impacts on habitat.

    NMFS defines a noise-induced threshold shift (TS) as a change, usually an increase, in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018). The amount of threshold shift is customarily expressed in dB. A TS can be permanent or temporary. As described in NMFS (2018), there are numerous factors to consider when examining the consequence of TS, including, but not limited to, the signal temporal pattern (e.g., impulsive or non-impulsive), likelihood an individual would be exposed for a long enough duration or to a high enough level to induce a TS, the magnitude of the TS, time to recovery (seconds to minutes or hours to days), the frequency range of the exposure (i.e., spectral content), the hearing and vocalization frequency range of the exposed species relative to the signal's frequency spectrum (i.e., how animal uses sound within the frequency band of the signal; e.g., Kastelein et al., 2014), and the overlap between the animal and the source (e.g., spatial, temporal, and spectral).

    Permanent Threshold Shift (PTS)—NMFS defines PTS as a permanent, irreversible increase in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS 2018). Available data from humans and other terrestrial mammals indicate that a 40 dB threshold shift approximates PTS onset (see Ward et al., 1958, 1959; Ward, 1960; Kryter et al., 1966; Miller, 1974; Ahroon et al., 1996; Henderson and Hu, 2008). PTS levels for marine mammals are estimates, with the exception of a single study unintentionally inducing PTS in a harbor seal (Kastak et al., 2008), there are no empirical data measuring PTS in marine mammals, largely due to the fact that, for various ethical reasons, experiments involving anthropogenic noise exposure at levels inducing PTS are not typically pursued or authorized (NMFS, 2018).

    Temporary Threshold Shift (TTS)—A temporary, reversible increase in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018). Based on data from cetacean TTS measurements (see Southall et al., 2007), a TTS of 6 dB is considered the minimum threshold shift clearly larger than any day-to-day or session-to-session variation in a subject's normal hearing ability (Schlundt et al., 2000; Finneran et al., 2000, 2002). As described in Finneran (2016), marine mammal studies have shown the amount of TTS increases with cumulative sound exposure level (SELcum) in an accelerating fashion: At low exposures with lower SELcum, the amount of TTS is typically small and the growth curves have shallow slopes. At exposures with higher SELcum, the growth curves become steeper and approach linear relationships with the noise SEL.

    Depending on the degree (elevation of threshold in dB), duration (i.e., recovery time), and frequency range of TTS, and the context in which it is experienced, TTS can have effects on marine mammals ranging from discountable to serious (similar to those discussed in auditory masking, below). For example, a marine mammal may be able to readily compensate for a brief, relatively small amount of TTS in a non-critical frequency range that takes place during a time when the animal is traveling through the open ocean, where ambient noise is lower and there are not as many competing sounds present. Alternatively, a larger amount and longer duration of TTS sustained during time when communication is critical for successful mother/calf interactions could have more serious impacts. We note that reduced hearing sensitivity as a simple function of aging has been observed in marine mammals, as well as humans and other taxa (Southall et al., 2007), so we can infer that strategies exist for coping with this condition to some degree, though likely not without cost.

    Currently, TTS data only exist for four species of cetaceans (bottlenose Start Printed Page 80034dolphin, beluga whale (Delphinapterus leucas), harbor porpoise, and Yangtze finless porpoise (Neophocoena asiaeorientalis)) and five species of pinnipeds exposed to a limited number of sound sources (i.e., mostly tones and octave-band noise) in laboratory settings (Finneran, 2015). TTS was not observed in trained spotted (Phoca largha) and ringed (Pusa hispida) seals exposed to impulsive noise at levels matching previous predictions of TTS onset (Reichmuth et al., 2016). In general, harbor seals and harbor porpoises have a lower TTS onset than other measured pinniped or cetacean species (Finneran, 2015). The potential for TTS from impact pile driving exists. After exposure to playbacks of impact pile driving sounds (rate 2760 strikes/hour) in captivity, mean TTS increased from 0 dB after 15 minute exposure to 5 dB after 360 minute exposure; recovery occurred within 60 minutes (Kastelein et al., 2016). Additionally, the existing marine mammal TTS data come from a limited number of individuals within these species. No data are available on noise-induced hearing loss for mysticetes. For summaries of data on TTS in marine mammals or for further discussion of TTS onset thresholds, please see Southall et al. (2007), Finneran and Jenkins (2012), Finneran (2015), and Table 5 in NMFS (2018).

    Installing piles requires impact pile driving. There would likely be pauses in activities producing the sound during each day. Given these pauses and that many marine mammals are likely moving through the action area and not remaining for extended periods of time, the potential for TS declines.

    Behavioral Harassment - Exposure to noise from pile driving and removal also has the potential to behaviorally disturb marine mammals. Available studies show wide variation in response to underwater sound; therefore, it is difficult to predict specifically how any given sound in a particular instance might affect marine mammals perceiving the signal. If a marine mammal does react briefly to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant (e.g., Lusseau and Bejder, 2007; Weilgart, 2007; NRC, 2005).

    Disturbance may result in changing durations of surfacing and dives, number of blows per surfacing, or moving direction and/or speed; reduced/increased vocal activities; changing/cessation of certain behavioral activities (such as socializing or feeding); visible startle response or aggressive behavior (such as tail/fluke slapping or jaw clapping); avoidance of areas where sound sources are located. Pinnipeds may increase their haul out time, possibly to avoid in-water disturbance (Thorson and Reyff, 2006). Behavioral responses to sound are highly variable and context-specific and any reactions depend on numerous intrinsic and extrinsic factors (e.g., species, state of maturity, experience, current activity, reproductive state, auditory sensitivity, time of day), as well as the interplay between factors (e.g., Richardson et al., 1995; Wartzok et al., 2004; Southall et al., 2007; Weilgart, 2007; Archer et al., 2010). Behavioral reactions can vary not only among individuals but also within an individual, depending on previous experience with a sound source, context, and numerous other factors (Ellison et al., 2012), and can vary depending on characteristics associated with the sound source (e.g., whether it is moving or stationary, number of sources, distance from the source). In general, pinnipeds seem more tolerant of, or at least habituate more quickly to, potentially disturbing underwater sound than do cetaceans, and generally seem to be less responsive to exposure to industrial sound than most cetaceans. Please see Appendices B and C of Southall et al. (2007) for a review of studies involving marine mammal behavioral responses to sound.

    Disruption of feeding behavior can be difficult to correlate with anthropogenic sound exposure, so it is usually inferred by observed displacement from known foraging areas, the appearance of secondary indicators (e.g., bubble nets or sediment plumes), or changes in dive behavior. As for other types of behavioral response, the frequency, duration, and temporal pattern of signal presentation, as well as differences in species sensitivity, are likely contributing factors to differences in response in any given circumstance (e.g., Croll et al., 2001; Nowacek et al., 2004; Madsen et al., 2006; Yazvenko et al., 2007). A determination of whether foraging disruptions incur fitness consequences would require information on or estimates of the energetic requirements of the affected individuals and the relationship between prey availability, foraging effort and success, and the life history stage of the animal.

    In 2016, the Alaska Department of Transportation and Public Facilities (ADOT&PF) documented observations of marine mammals during construction activities (i.e., pile driving) at the Kodiak Ferry Dock (see 80 FR 60636, October 7, 2015). In the marine mammal monitoring report for that project (ABR 2016), 1,281 Steller sea lions were observed within the Level B disturbance zone during pile driving or drilling (i.e., documented as Level B harassment take). Of these, 19 individuals demonstrated an alert behavior, 7 were fleeing, and 19 swam away from the project site. All other animals (98 percent) were engaged in activities such as milling, foraging, or fighting and did not change their behavior. In addition, two sea lions approached within 20 meters of active vibratory pile driving activities. Three harbor seals were observed within the disturbance zone during pile driving activities; none of them displayed disturbance behaviors. Fifteen killer whales and three harbor porpoise were also observed within the Level B harassment zone during pile driving. The killer whales were travelling or milling while all harbor porpoises were travelling. No signs of disturbance were noted for either of these species. Given the similarities in activities and habitat, we expect similar behavioral responses of marine mammals to the Navy's specified activity. That is, disturbance, if any, is likely to be temporary and localized (e.g., small area movements).

    Stress responses—An animal's perception of a threat may be sufficient to trigger stress responses consisting of some combination of behavioral responses, autonomic nervous system responses, neuroendocrine responses, or immune responses (e.g., Seyle 1950; Moberg 2000). In many cases, an animal's first and sometimes most economical (in terms of energetic costs) response is behavioral avoidance of the potential stressor. Autonomic nervous system responses to stress typically involve changes in heart rate, blood pressure, and gastrointestinal activity. These responses have a relatively short duration and may or may not have a significant long-term effect on an animal's fitness.

    Neuroendocrine stress responses often involve the hypothalamus-pituitary-adrenal system. Virtually all neuroendocrine functions that are affected by stress—including immune competence, reproduction, metabolism, and behavior—are regulated by pituitary hormones. Stress-induced changes in the secretion of pituitary hormones have been implicated in failed reproduction, altered metabolism, reduced immune competence, and behavioral disturbance (e.g., Moberg 1987; Blecha 2000). Start Printed Page 80035Increases in the circulation of glucocorticoids are also equated with stress (Romano et al., 2004).

    The primary distinction between stress (which is adaptive and does not normally place an animal at risk) and “distress” is the cost of the response. During a stress response, an animal uses glycogen stores that can be quickly replenished once the stress is alleviated. In such circumstances, the cost of the stress response would not pose serious fitness consequences. However, when an animal does not have sufficient energy reserves to satisfy the energetic costs of a stress response, energy resources must be diverted from other functions. This state of distress will last until the animal replenishes its energetic reserves sufficient to restore normal function.

    Relationships between these physiological mechanisms, animal behavior, and the costs of stress responses are well-studied through controlled experiments and for both laboratory and free-ranging animals (e.g., Holberton et al., 1996; Hood et al., 1998; Jessop et al., 2003; Krausman et al., 2004; Lankford et al., 2005). Stress responses due to exposure to anthropogenic sounds or other stressors and their effects on marine mammals have also been reviewed (Fair and Becker 2000; Romano et al., 2002b) and, more rarely, studied in wild populations (e.g., Romano et al., 2002a). For example, Rolland et al. (2012) found that noise reduction from reduced ship traffic in the Bay of Fundy was associated with decreased stress in North Atlantic right whales. These and other studies lead to a reasonable expectation that some marine mammals will experience physiological stress responses upon exposure to acoustic stressors and that it is possible that some of these would be classified as “distress.” In addition, any animal experiencing TTS would likely also experience stress responses (NRC, 2003), however distress is an unlikely result of this project based on observations of marine mammals during previous, similar projects in the area.

    Masking—Sound can disrupt behavior through masking, or interfering with, an animal's ability to detect, recognize, or discriminate between acoustic signals of interest (e.g., those used for intraspecific communication and social interactions, prey detection, predator avoidance, navigation) (Richardson et al., 1995). Masking occurs when the receipt of a sound is interfered with by another coincident sound at similar frequencies and at similar or higher intensity, and may occur whether the sound is natural (e.g., snapping shrimp, wind, waves, precipitation) or anthropogenic (e.g., pile driving, shipping, sonar, seismic exploration) in origin. The ability of a noise source to mask biologically important sounds depends on the characteristics of both the noise source and the signal of interest (e.g., signal-to-noise ratio, temporal variability, direction), in relation to each other and to an animal's hearing abilities (e.g., sensitivity, frequency range, critical ratios, frequency discrimination, directional discrimination, age or TTS hearing loss), and existing ambient noise and propagation conditions. Masking of natural sounds can result when human activities produce high levels of background sound at frequencies important to marine mammals. Conversely, if the background level of underwater sound is high (e.g., on a day with strong wind and high waves), an anthropogenic sound source would not be detectable as far away as would be possible under quieter conditions and would itself be masked. The San Diego area contains active military and commercial shipping, cruise ship and ferry operations, as well as numerous recreational and other commercial vessel and background sound levels in the area are already elevated as described in Dahl and Dall'Osta (2019).

    Potential Effects of High-Pressure Water Jetting, Underwater Chainsaw, and Pile Clipper Sounds—High-pressure water jetting, underwater chainsaws, and pile clippers may be used to assist with removal of piles (and water jetting may be used to aid installation). The sounds produced by these activities are of similar frequencies to the sounds produced by vessels (NAVFAC Southwest, 2020), and are anticipated to diminish to background noise levels (or be masked by background noise levels) in the Bay relatively close to the project site. Therefore, the effects of this equipment are likely to be similar to those discussed above in the Behavioral Harassment section.

    Airborne Acoustic Effects—Pinnipeds that occur near the project site could be exposed to airborne sounds associated with pile driving and removal that have the potential to cause behavioral harassment, depending on their distance from pile driving activities. Cetaceans are not expected to be exposed to airborne sounds that would result in harassment as defined under the MMPA.

    Airborne noise would primarily be an issue for pinnipeds that are swimming or hauled out near the project site within the range of noise levels elevated above the acoustic criteria. We recognize that pinnipeds in the water could be exposed to airborne sound that may result in behavioral harassment when looking with their heads above water. Most likely, airborne sound would cause behavioral responses similar to those discussed above in relation to underwater sound. For instance, anthropogenic sound could cause hauled-out pinnipeds to exhibit changes in their normal behavior, such as reduction in vocalizations, or cause them to temporarily abandon the area and move further from the source. However, these animals would previously have been `taken' because of exposure to underwater sound above the behavioral harassment thresholds, which are in all cases larger than those associated with airborne sound. Thus, the behavioral harassment of these animals is already accounted for in these estimates of potential take. Therefore, we do not believe that authorization of incidental take resulting from airborne sound for pinnipeds is warranted, and airborne sound is not discussed further here.

    Marine Mammal Habitat Effects

    The Navy's construction activities could have localized, temporary impacts on marine mammal habitat and their prey by increasing in-water sound pressure levels and slightly decreasing water quality. Increased noise levels may affect acoustic habitat (see masking discussion above) and adversely affect marine mammal prey in the vicinity of the project area (see discussion below). During impact and vibratory pile driving or removal, elevated levels of underwater noise would ensonify San Diego Bay where both fishes and mammals occur and could affect foraging success. Additionally, marine mammals may avoid the area during construction, however, displacement due to noise is expected to be temporary and is not expected to result in long-term effects to the individuals or populations. Construction activities are of short duration and would likely have temporary impacts on marine mammal habitat through increases in underwater and airborne sound.

    A temporary and localized increase in turbidity near the seafloor would occur in the immediate area surrounding the area where piles are installed or removed. In general, turbidity associated with pile installation is localized to about a 25-foot (7.6-meter) radius around the pile (Everitt et al. 1980). The sediments of the project site are sandy and will settle out rapidly when disturbed. Cetaceans are not expected to be close enough to the pile driving areas to experience effects of turbidity, and any pinnipeds could Start Printed Page 80036avoid localized areas of turbidity. Local strong currents are anticipated to disburse any additional suspended sediments produced by project activities at moderate to rapid rates depending on tidal stage. Therefore, we expect the impact from increased turbidity levels to be discountable to marine mammals and do not discuss it further.

    In-Water Construction Effects on Potential Foraging Habitat

    The area likely impacted by the project is relatively small compared to the available habitat (e.g., the impacted area is in the south central bay only) of San Diego Bay and does not include any Biologically Important Areas or other habitat of known importance. The area is highly influenced by anthropogenic activities. The total seafloor area affected by pile installation and removal is a very small area compared to the vast foraging area available to marine mammals in the San Diego Bay. At best, the impact area provides marginal foraging habitat for marine mammals and fish. Furthermore, pile driving and removal at the project site would not obstruct movements or migration of marine mammals.

    Avoidance by potential prey (i.e., fish) of the immediate area due to the temporary loss of this foraging habitat is also possible. The duration of fish avoidance of this area after pile driving stops is unknown, but a rapid return to normal recruitment, distribution and behavior is anticipated. Any behavioral avoidance by fish of the disturbed area would still leave significantly large areas of fish and marine mammal foraging habitat in the nearby vicinity.

    In-water Construction Effects on Potential Prey—Sound may affect marine mammals through impacts on the abundance, behavior, or distribution of prey species (e.g., crustaceans, cephalopods, fish, zooplankton). Marine mammal prey varies by species, season, and location. Here, we describe studies regarding the effects of noise on known marine mammal prey.

    Fish utilize the soundscape and components of sound in their environment to perform important functions such as foraging, predator avoidance, mating, and spawning (e.g., Zelick and Mann, 1999; Fay, 2009). Depending on their hearing anatomy and peripheral sensory structures, which vary among species, fishes hear sounds using pressure and particle motion sensitivity capabilities and detect the motion of surrounding water (Fay et al., 2008). The potential effects of noise on fishes depends on the overlapping frequency range, distance from the sound source, water depth of exposure, and species-specific hearing sensitivity, anatomy, and physiology. Key impacts to fishes may include behavioral responses, hearing damage, barotrauma (pressure-related injuries), and mortality.

    Fish react to sounds which are especially strong and/or intermittent low-frequency sounds, and behavioral responses such as flight or avoidance are the most likely effects. Short duration, sharp sounds can cause overt or subtle changes in fish behavior and local distribution. The reaction of fish to noise depends on the physiological state of the fish, past exposures, motivation (e.g., feeding, spawning, migration), and other environmental factors. Hastings and Popper (2005) identified several studies that suggest fish may relocate to avoid certain areas of sound energy. Additional studies have documented effects of pile driving on fish, although several are based on studies in support of large, multiyear bridge construction projects (e.g., Scholik and Yan, 2001, 2002; Popper and Hastings, 2009). Several studies have demonstrated that impulse sounds might affect the distribution and behavior of some fishes, potentially impacting foraging opportunities or increasing energetic costs (e.g., Fewtrell and McCauley, 2012; Pearson et al., 1992; Skalski et al., 1992; Santulli et al., 1999; Paxton et al., 2017). However, some studies have shown no or slight reaction to impulse sounds (e.g., Pena et al., 2013; Wardle et al., 2001; Jorgenson and Gyselman, 2009; Cott et al., 2012).

    SPLs of sufficient strength have been known to cause injury to fish and fish mortality. However, in most fish species, hair cells in the ear continuously regenerate and loss of auditory function likely is restored when damaged cells are replaced with new cells. Halvorsen et al. (2012a) showed that a TTS of 4-6 dB was recoverable within 24 hours for one species. Impacts would be most severe when the individual fish is close to the source and when the duration of exposure is long. Injury caused by barotrauma can range from slight to severe and can cause death, and is most likely for fish with swim bladders. Barotrauma injuries have been documented during controlled exposure to impact pile driving (Halvorsen et al., 2012b; Casper et al., 2013).

    Because of the rarity of use and research, the effects of pile clippers, underwater chainsaws, and water jetting are not fully known; but given their similarity to ship noises we do not expect unique effects from these activities.

    The most likely impact to fish from pile driving and removal and demolition activities at the project area would be temporary behavioral avoidance of the area. The duration of fish avoidance of this area after pile driving stops is unknown, but a rapid return to normal recruitment, distribution and behavior is anticipated.

    Construction activities, in the form of increased turbidity, have the potential to adversely affect forage fish in the project area. Forage fish form a significant prey base for many marine mammal species that occur in the project area. Increased turbidity is expected to occur in the immediate vicinity (on the order of 10 feet (3 m) or less) of construction activities. However, suspended sediments and particulates are expected to dissipate quickly within a single tidal cycle. Given the limited area affected and high tidal dilution rates any effects on forage fish are expected to be minor or negligible. Finally, exposure to turbid waters from construction activities is not expected to be different from the current exposure; fish and marine mammals in San Diego Bay are routinely exposed to substantial levels of suspended sediment from natural and anthropogenic sources.

    In summary, given the short daily duration of sound associated with individual pile driving events and the relatively small areas being affected, pile driving activities associated with the proposed action are not likely to have a permanent, adverse effect on any fish habitat, or populations of fish species. Any behavioral avoidance by fish of the disturbed area would still leave significantly large areas of fish and marine mammal foraging habitat in the nearby vicinity. Thus, we conclude that impacts of the specified activity are not likely to have more than short-term adverse effects on any prey habitat or populations of prey species. Further, any impacts to marine mammal habitat are not expected to result in significant or long-term consequences for individual marine mammals, or to contribute to adverse impacts on their populations.

    Estimated Take

    This section provides an estimate of the number of incidental takes proposed for authorization through this IHA, which will inform both NMFS' consideration of “small numbers” and the negligible impact determination.

    Harassment is the only type of take expected to result from these activities. Except with respect to certain activities not pertinent here, section 3(18) of the MMPA defines “harassment” as any act of pursuit, torment, or annoyance, Start Printed Page 80037which (i) has the potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B harassment).

    Authorized takes would be by Level B harassment, as use of the acoustic source (i.e., vibratory or impact pile driving) has the potential to result in disruption of behavioral patterns for individual marine mammals. Based on the nature of the activity and the anticipated effectiveness of the mitigation measures (i.e., shutdown)—discussed in detail below in Proposed Mitigation section, Level A harassment is neither anticipated nor proposed to be authorized.

    As described previously, no mortality is anticipated or proposed to be authorized for this activity. Below we describe how the take is estimated.

    Generally speaking, we estimate take by considering: (1) Acoustic thresholds above which marine mammals will be behaviorally harassed or incur some degree of permanent hearing impairment; (2) the area or volume of water that will be ensonified above these levels in a day; (3) the density or occurrence of marine mammals within these ensonified areas; and, (4) and the number of days of activities. We note that while these basic factors can contribute to a basic calculation to provide an initial prediction of takes, additional information that can qualitatively inform take estimates is also sometimes available (e.g., previous monitoring results or average group size). Due to the lack of marine mammal density, NMFS relied on local occurrence data and group size to estimate take. Below, we describe the factors considered here in more detail and present the proposed take estimate.

    Acoustic Thresholds

    NMFS recommends the use of acoustic thresholds that identify the received level of underwater sound above which exposed marine mammals would be reasonably expected to be behaviorally harassed (equated to Level B harassment) or to incur PTS of some degree (equated to Level A harassment).

    Level B Harassment for non-explosive sources—Though significantly driven by received level, the onset of behavioral disturbance from anthropogenic noise exposure is also informed to varying degrees by other factors related to the source (e.g., frequency, predictability, duty cycle), the environment (e.g., bathymetry), and the receiving animals (hearing, motivation, experience, demography, behavioral context) and can be difficult to predict (Southall et al., 2007, Ellison et al., 2012). Based on what the available science indicates and the practical need to use a threshold based on a factor that is both predictable and measurable for most activities, NMFS uses a generalized acoustic threshold based on received level to estimate the onset of behavioral harassment. NMFS predicts that marine mammals are likely to be behaviorally harassed in a manner we consider Level B harassment when exposed to underwater anthropogenic noise above received levels of 120 dB re 1 microPascal (μPa) (root mean square (rms)) for continuous (e.g., vibratory pile-driving) and above 160 dB re 1 μPa (rms) for non-explosive impulsive (e.g., impact pile driving) or intermittent (e.g., scientific sonar) sources.

    The Navy's proposed activity includes the use of continuous (vibratory pile-driving, water jetting, chainsaw and pile clippers) and impulsive (impact pile-driving) sources, and therefore the 120 and 160 dB re 1 μPa (rms) thresholds are applicable. However, as discussed above, the Navy has established that the ambient noise in the project area is 126 dB re 1 μPa (rms). Since this is louder than the 120 dB threshold for continuous sources, 126 dB becomes the effective threshold for Level B harassment for continuous sources.

    Level A harassment for non-explosive sources—NMFS' Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0) (Technical Guidance, 2018) identifies dual criteria to assess auditory injury (Level A harassment) to five different marine mammal groups (based on hearing sensitivity) as a result of exposure to noise from two different types of sources (impulsive or non-impulsive). The Navy's activity includes the use of impulsive (impact pile-driving) and non-impulsive (vibratory pile driving/removal and other removal methods) sources.

    These thresholds are provided in Table 4. The references, analysis, and methodology used in the development of the thresholds are described in NMFS 2018 Technical Guidance, which may be accessed at https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-acoustic-technical-guidance.

    Table 4—Thresholds Identifying the Onset of Permanent Threshold Shift

    Hearing groupPTS onset acoustic thresholds * (Received level)
    ImpulsiveNon-impulsive
    Low-Frequency (LF) CetaceansCell 1: Lpk,flat: 219 dB; L E,LF,24h: 183 dBCell 2: L E,LF,24h: 199 dB.
    Mid-Frequency (MF) CetaceansCell 3: Lpk,flat: 230 dB; L E,MF,24h: 185 dBCell 4 L E,MF,24h: 198 dB.
    High-Frequency (HF) CetaceansCell 5: Lpk,flat: 202 dB L E,HF,24h: 155 dBCell 6 L E,HF,24h: 173 dB.
    Phocid Pinnipeds (PW) (Underwater)Cell 7: Lpk,flat: 218 dB L E,PW,24h: 185 dBCell 8: L E,PW,24h: 201 dB.
    Otariid Pinnipeds (OW) (Underwater)Cell 9: Lpk,flat:232 dB L E,OW,24h: 203 dBCell 10: L E,OW,24h: 219 dB.
    * Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level thresholds associated with impulsive sounds, these thresholds should also be considered.
    Note: Peak sound pressure (Lpk) has a reference value of 1 µPa, and cumulative sound exposure level (LE) has a reference value of 1µPa2 s. In this Table, thresholds are abbreviated to reflect American National Standards Institute standards (ANSI 2013). However, peak sound pressure is defined by ANSI as incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript “flat” is being included to indicate peak sound pressure should be flat weighted or unweighted within the generalized hearing range. The subscript associated with cumulative sound exposure level thresholds indicates the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds) and that the recommended accumulation period is 24 hours. The cumulative sound exposure level thresholds could be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under which these acoustic thresholds will be exceeded.
    Start Printed Page 80038

    Ensonified Area

    Here, we describe operational and environmental parameters of the activity that will feed into identifying the area ensonified above the acoustic thresholds, which include source levels and transmission loss coefficient.

    The sound field in the project area is the existing background noise plus additional construction noise from the proposed project. Marine mammals are expected to be affected via sound generated by the primary components of the project (i.e., impact pile driving, vibratory pile removal, water jetting, pile clippers and underwater chainsaws).

    Vibratory hammers produce constant sound when operating, and produce vibrations that liquefy the sediment surrounding the pile, allowing it to penetrate to the required seating depth or be withdrawn more easily. An impact hammer is a steel device that works like a piston, producing a series of independent strikes to drive the pile. Impact hammering typically generates the loudest noise associated with pile installation. The actual durations of each installation method vary depending on the type and size of the pile.

    In order to calculate distances to the Level A harassment and Level B harassment sound thresholds for piles of various sizes being used in this project, NMFS used acoustic monitoring data from other locations to develop source levels for the various pile types, sizes and methods (see Table 5). Data for the removal methods including water jetting, pile clippers and underwater chainsaws come from data gathered at other nearby Navy projects in San Diego Bay (NAVFAC SW, 2020), the source levels used are from the averages of the maximum source levels measured, a somewhat more conservative measure than the median sound levels we typically use.

    Table 5—Project Sound Source Levels

    Pile driving activityEstimated sound source level at 10 meters without attenuationData source and proxy
    MethodPile TypedB RMSdB SELdB peak
    Vibratory Extraction12-inch timber/plastic152Greenbusch Group (2018).
    20 and 24-inch concrete160Caltrans (2015), Table I.2-2, 24-inch steel sheet.
    16-inch steel160Caltrans (2015), Table I.2-2, 24-inch steel sheet.
    Water Jetting20-inch concrete158NAVFAC SW (2020), 24 x 30-inch concrete.
    Underwater Chainsaw12 to 24-inch concrete150NAVFAC SW (2020), 16-inch concrete.*
    Small Pile Clipper12-inch timber/plastic154NAVFAC SW (2020), 13-inch polycarbonate.
    Large Pile Clipper20-inch concrete161NAVFAC SW (2020), 24-inch concrete.
    Impact Hammer20 and 24-inch concrete176166188Caltrans (2015), Table I.2-1, 24-inch concrete.
    16-inch fiberglass153** 144** 177Caltrans (2015), 13-inch plastic.
    Note: SEL = single strike sound exposure level; dB peak = peak sound level; rms = root mean square.
    * Source level was 147 dB at 17m from source, back calculated to 150dB using transmission loss coefficient of 15.
    ** Average of the peak values was 166 and that value was used in modelling in Dell'Osto and Dahl (2019) rather than the absolute peak we recommend for use in the user spreadsheet, SEL calculated from assumed strike rate in Dell'Osto and Dahl (2019).

    During pile driving installation activities, there may be times when two pile extraction methods (pile clippers, water jetting, underwater chainsaws or vibratory pile removal) are used simultaneously. The likelihood of such an occurrence is anticipated to be infrequent, will depend on the specific methods chosen by the contractor, and would be for short durations on that day. In-water pile removal occurs intermittently, and it is common for removal to start and stop multiple times as each pile is adjusted and its progress is measured. Moreover, the Navy has multiple options for pile removal depending on the pile type and condition, sediment, and how stuck the pile is, etc. When two continuous noise sources, such as pile clippers, have overlapping sound fields, there is potential for higher sound levels than for non-overlapping sources. When two or more pile removal methods (pile clippers, water jetting, underwater chainsaws or vibratory pile removal) are used simultaneously, and the sound field of one source encompasses the sound field of another source, the sources are considered additive and combined using the following rules (see Table 6): For addition of two simultaneous methods, the difference between the two sound source levels (SSLs) is calculated, and if that difference is between 0 and 1 dB, 3 dB are added to the higher SSL; if difference is between 2 or 3 dB, 2 dB are added to the highest SSL; if the difference is between 4 to 9 dB, 1 dB is added to the highest SSL; and with differences of 10 or more dB, there is no addition (NMFS 2018b; WSDOT 2018).

    Table 6—Rules for Combining Sound Levels Generated During Pile Removal

    Difference in SSLLevel A zonesLevel B zones
    0 or 1 dBAdd 3 dB to the higher source levelAdd 3 dB to the higher source level.
    2 or 3 dBAdd 2 dB to the higher source levelAdd 2 dB to the higher source level.
    4 to 9 dBAdd 1 dB to the higher source levelAdd 1 dB to the higher source level.
    Start Printed Page 80039
    10 dB or moreAdd 0 dB to the higher source levelAdd 0 dB to the higher source level.
    Source: Modified from USDOT 1995, WSDOT 2018, and NMFS 2018b
    Note: dB = decibels; SSL = sound source level.

    There is also the possibility that impact installation of piles could happen simultaneously with any of the non-impulsive removal methods over large portions of the project as described above. On days when this occurs the Level A harassment zones would be based on the zones calculated for impact pile driving while the Level B harassment zone would be the largest of the zones for whatever construction methods are being used that day.

    Level B Harassment Zones

    Transmission loss (TL) is the decrease in acoustic intensity as an acoustic pressure wave propagates out from a source. TL parameters vary with frequency, temperature, sea conditions, current, source and receiver depth, water depth, water chemistry, and bottom composition and topography. The general formula for underwater TL is:

    TL = B * Log10 (R1/R2),

    where

    TL = transmission loss in dB

    B = transmission loss coefficient; for practical spreading equals 15

    R1 = the distance of the modeled SPL from the driven pile, and

    R2 = the distance from the driven pile of the initial measurement

    The recommended TL coefficient for most nearshore environments is the practical spreading value of 15. This value results in an expected propagation environment that would lie between spherical and cylindrical spreading loss conditions, which is the most appropriate assumption for the Navy's proposed activity in the absence of specific modelling. For this project however, the Navy did model sound propagation for the impact and vibratory hammering methods (Dall'Osto and Dahl 2019). For all other pile removal methods we used the practical spreading value.

    The Navy determined underwater noise would fall below the behavioral effects threshold of 126 dB rms for marine mammals at distances of less than 10 to 7,140 m depending on the pile type(s) and methods (Table 7). It should be noted that based on the bathymetry and geography of San Diego Bay, sound will not reach the full distance of the Level B harassment isopleths in all directions. Because the Navy's as yet unhired contractor has not decided which of the various pile removal methods it will use, we only calculate a worst-case scenario of simultaneous operation of two of the loudest sound producing methods (large pile clippers) to consider the largest possible harassment zones for simultaneous pile removal.

    Table 7—Level A and Level B Isopleths for Each Pile Driving Type and Method

    Pile Driving ActivityRadial distance or maximum modeled length × width (m)
    MethodPile typeLevel ALevel B
    Vibratory Extraction12-inch timber/plastic<102167 × 1065.
    20 and 24-inch concrete<106,990 × 1,173.
    16-inch steel<107,140 × 1,595.
    Water Jetting20-inch concrete<101359.
    Underwater Chainsaw12 to 24-inch concrete<10398.
    Small Pile Clipper12-inch timber/plastic<10736.
    Large Pile Clipper20 to 24-inch concrete<102154.
    Two Large Pile Clippers20 to 24-inch concrete<103415.
    Impact Hammer20 and 24-inch concrete<10192.
    16-inch fiberglass<10<10.

    Level A Harassment Zones

    When the NMFS Technical Guidance (2016) was published, in recognition of the fact that ensonified area/volume could be more technically challenging to predict because of the duration component in the new thresholds, we developed a User Spreadsheet that includes tools to help predict a simple isopleth that can be used in conjunction with marine mammal density or occurrence to help predict takes. We note that because of some of the assumptions included in the methods used for these tools, we anticipate that isopleths produced are typically going to be overestimates of some degree, which may result in some degree of overestimate of take by Level A harassment. However, these tools offer the best way to predict appropriate isopleths when more sophisticated 3D modeling methods are not available, and NMFS continues to develop ways to quantitatively refine these tools, and will qualitatively address the output where appropriate. For stationary sources such as impact/vibratory pile driving or removal using any of the methods discussed above, NMFS User Spreadsheet predicts the closest distance at which, if a marine mammal remained at that distance the whole duration of the activity, it would not incur PTS.

    As discussed above, the Navy modelled sound propagation for impact and vibratory hammering of piles (Dall'Osto and Dahl 2019) and used those models to calculate Level A harassment isopleths. For all other pile removal methods we used the User Spreadsheet to determine the Level A harassment isopleths. Inputs used in the User Spreadsheet or models are reported in Table 8 and the resulting isopleths are reported in Table 7 for each of construction methods.Start Printed Page 80040

    Table 8—NMFS Technical Guidance User Spreadsheet Input to Calculate Level A Isopleths for a Combination of Pile Driving

    Pile Driving ActivityRadial distance or maximum modeled length × width (m)
    MethodPile TypePiles per dayStrikes per pile/duration to drive a single pile
    Vibratory Extraction12-inch timber/plastic810 minutes.
    20 and 24-inch concrete810 minutes.
    16-inch steel810 minutes.
    Water Jetting20-inch concrete820 minutes.
    Underwater Chainsaw12 to 24-inch concrete810 minutes.
    Small Pile Clipper12-inch timber/plastic810 minutes.
    Large Pile Clipper20-inch concrete810 minutes.
    Impact Hammer20 and 24-inch concrete7600 strikes.
    16-inch fiberglass7600 strikes.

    The above input scenarios lead to PTS isopleth distances (Level A thresholds) of less than 10 m for all methods and piles (Table 7).

    Marine Mammal Occurrence and Take Calculation and Estimation

    In this section we provide the information about the presence, density, or group dynamics of marine mammals that will inform the take calculations. Here we describe how the information provided above is brought together to produce a quantitative take estimate.

    No California sea lion density information is available for south San Diego Bay. Potential exposures to impact and vibratory pile driving noise for each threshold for California sea lions were estimated using data collected during a 2010 survey as reported in Sorensen and Swope (2010). During this survey two separate sea lions were observed in the project area.

    The available survey data from Sorenson and Swope (2010) and other unpublished monitoring data from recent nearby projects on Naval Base San Diego suggests two California sea lions could be present each day in the project area. However given the limited data available and the more northerly location of this project relative to the recent dry dock project (https://www.fisheries.noaa.gov/​action/​incidental-take-authorization-us-navy-floating-dry-dock-project-naval-base-san-diego) where we estimate two California sea lions per day, to be conservative, we have estimated four California sea lions could be present each day. As noted above, there are 250 days of in-water work for this project. Multiplication of the above estimate of animals per day (4) times the days of work (250) results in a proposed Level B harassment take of 1000 California sea lions (Table 9). The Navy intends to avoid Level A harassment take by shutting down activities if a California sea lion approaches within 20 m of the project site, which encompasses all Level A harassment ensonification zones. Therefore, no take by Level A harassment is anticipated or proposed for authorization.

    Table 9—Proposed Authorized Amount of Taking, by Level A Harassment and Level B Harassment, by Species and Stock and Percent of Take by Stock

    SpeciesAuthorized TakePercent of Stock
    Level BLevel A
    California sea lion (Zalophus californianus) U.S. Stock100000.4

    Proposed Mitigation

    In order to issue an IHA under section 101(a)(5)(D) of the MMPA, NMFS must set forth the permissible methods of taking pursuant to the activity, and other means of effecting the least practicable impact on the species or stock and its habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stock for taking for certain subsistence uses (latter not applicable for this action). NMFS regulations require applicants for incidental take authorizations to include information about the availability and feasibility (economic and technological) of equipment, methods, and manner of conducting the activity or other means of effecting the least practicable adverse impact upon the affected species or stocks and their habitat (50 CFR 216.104(a)(11)).

    In evaluating how mitigation may or may not be appropriate to ensure the least practicable adverse impact on species or stocks and their habitat, as well as subsistence uses where applicable, we carefully consider two primary factors:

    (1) The manner in which, and the degree to which, the successful implementation of the measure(s) is expected to reduce impacts to marine mammals, marine mammal species or stocks, and their habitat. This considers the nature of the potential adverse impact being mitigated (likelihood, scope, range). It further considers the likelihood that the measure will be effective if implemented (probability of accomplishing the mitigating result if implemented as planned), the likelihood of effective implementation (probability implemented as planned); and

    (2) The practicability of the measures for applicant implementation, which may consider such things as cost, impact on operations, and, in the case of a military readiness activity, personnel safety, practicality of implementation, and impact on the effectiveness of the military readiness activity.

    The following mitigation measures are proposed in the IHA:

    • For in-water heavy machinery work other than pile driving, if a marine Start Printed Page 80041mammal comes within 10 m, operations shall cease and vessels shall reduce speed to the minimum level required to maintain steerage and safe working conditions. This type of work could include the following activities: (1) Movement of the barge to the pile location; or (2) positioning of the pile on the substrate via a crane (i.e., stabbing the pile);
    • Conduct briefings between construction supervisors and crews and the marine mammal monitoring team prior to the start of all pile driving activity and when new personnel join the work, to explain responsibilities, communication procedures, marine mammal monitoring protocol, and operational procedures;
    • For those marine mammals for which Level B harassment take has not been requested, in-water pile installation/removal will shut down immediately if such species are observed within or entering the Level B harassment zone; and
    • If take reaches the authorized limit for an authorized species, pile installation will be stopped as these species approach the Level B harassment zone to avoid additional take.

    The following mitigation measures would apply to the Navy's in-water construction activities.

    • Establishment of Shutdown Zones—The Navy will establish shutdown zones for all pile driving and removal activities. The purpose of a shutdown zone is generally to define an area within which shutdown of the activity would occur upon sighting of a marine mammal (or in anticipation of an animal entering the defined area). Shutdown zones typically vary based on the activity type and marine mammal hearing group (Table 4). In this case there is only one species affected and all level A harassment isopleths are less than 10 m radius. To be conservative, the Navy will establish a 20 m shutdown zone for all pile driving or removal activities.
    • The placement of Protected Species Observers (PSOs) during all pile driving and removal activities (described in detail in the Proposed Monitoring and Reporting section) will ensure that the entire shutdown zone is visible during pile installation. Should environmental conditions deteriorate such that marine mammals within the entire shutdown zone would not be visible (e.g., fog, heavy rain), pile driving and removal must be delayed until the PSO is confident marine mammals within the shutdown zone could be detected.
    • Monitoring for Level B Harassment—The Navy will monitor the Level A and B harassment zones. Monitoring zones provide utility for observing by establishing monitoring protocols for areas adjacent to the shutdown zones. Monitoring zones enable observers to be aware of and communicate the presence of marine mammals in the project area outside the shutdown zone and thus prepare for a potential halt of activity should the animal enter the shutdown zone. Placement of PSOs will allow PSOs to observe marine mammals within the Level B harassment zones.
    • Pre-activity Monitoring—Prior to the start of daily in-water construction activity, or whenever a break in pile driving/removal of 30 minutes or longer occurs, PSOs will observe the shutdown and monitoring zones for a period of 30 minutes. The shutdown zone will be considered cleared when a marine mammal has not been observed within the zone for that 30-minute period. If a marine mammal is observed within the shutdown zone, a soft-start cannot proceed until the animal has left the zone or has not been observed for 15 minutes. When a marine mammal for which Level B harassment take is authorized is present in the Level B harassment zone, activities may begin and Level B harassment take will be recorded. If the entire Level B harassment zone is not visible at the start of construction, pile driving activities can begin. If work ceases for more than 30 minutes, the pre-activity monitoring of the shutdown zones will commence.
    • Soft Start—Soft-start procedures are believed to provide additional protection to marine mammals by providing warning and/or giving marine mammals a chance to leave the area prior to the impact hammer operating at full capacity. For impact pile driving, contractors will be required to provide an initial set of three strikes from the hammer at reduced energy, followed by a 30-second waiting period. This procedure will be conducted three times before impact pile driving begins. Soft start will be implemented at the start of each day's impact pile driving and at any time following cessation of impact pile driving for a period of 30 minutes or longer.

    Based on our evaluation of the applicant's proposed measures, as well as other measures considered by NMFS, NMFS has preliminarily determined that the proposed mitigation measures provide the means effecting the least practicable impact on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance.

    Proposed Monitoring and Reporting

    In order to issue an IHA for an activity, section 101(a)(5)(D) of the MMPA states that NMFS must set forth requirements pertaining to the monitoring and reporting of such taking. The MMPA implementing regulations at 50 CFR 216.104 (a)(13) indicate that requests for authorizations must include the suggested means of accomplishing the necessary monitoring and reporting that will result in increased knowledge of the species and of the level of taking or impacts on populations of marine mammals that are expected to be present in the proposed action area. Effective reporting is critical both to compliance as well as ensuring that the most value is obtained from the required monitoring.

    Monitoring and reporting requirements prescribed by NMFS should contribute to improved understanding of one or more of the following:

    • Occurrence of marine mammal species or stocks in the area in which take is anticipated (e.g., presence, abundance, distribution, density);
    • Nature, scope, or context of likely marine mammal exposure to potential stressors/impacts (individual or cumulative, acute or chronic), through better understanding of: (1) Action or environment (e.g., source characterization, propagation, ambient noise); (2) affected species (e.g., life history, dive patterns); (3) co-occurrence of marine mammal species with the action; or (4) biological or behavioral context of exposure (e.g., age, calving or feeding areas);
    • Individual marine mammal responses (behavioral or physiological) to acoustic stressors (acute, chronic, or cumulative), other stressors, or cumulative impacts from multiple stressors;
    • How anticipated responses to stressors impact either: (1) Long-term fitness and survival of individual marine mammals; or (2) populations, species, or stocks;
    • Effects on marine mammal habitat (e.g., marine mammal prey species, acoustic habitat, or other important physical components of marine mammal habitat); and
    • Mitigation and monitoring effectiveness.

    Visual Monitoring

    Marine mammal monitoring must be conducted in accordance with the Monitoring Plan and Section 5 of the IHA. Marine mammal monitoring during pile driving and removal must be conducted by NMFS-approved PSOs in a manner consistent with the following:Start Printed Page 80042

    • Independent PSOs (i.e., not construction personnel) who have no other assigned tasks during monitoring periods must be used;
    • At least one PSO must have prior experience performing the duties of a PSO during construction activity pursuant to a NMFS-issued incidental take authorization.
    • Other PSOs may substitute education (degree in biological science or related field) or training for experience;
    • Where a team of three or more PSOs are required, a lead observer or monitoring coordinator must be designated. The lead observer must have prior experience performing the duties of a PSO during construction activity pursuant to a NMFS-issued incidental take authorization; and
    • The Navy must submit PSO Curriculum Vitae for approval by NMFS prior to the onset of pile driving.

    PSOs must have the following additional qualifications:

    • Ability to conduct field observations and collect data according to assigned protocols;
    • Experience or training in the field identification of marine mammals, including the identification of behaviors;
    • Sufficient training, orientation, or experience with the construction operation to provide for personal safety during observations;
    • Writing skills sufficient to prepare a report of observations including but not limited to the number and species of marine mammals observed; dates and times when in-water construction activities were conducted; dates, times, and reason for implementation of mitigation (or why mitigation was not implemented when required); and marine mammal behavior; and
    • Ability to communicate orally, by radio or in person, with project personnel to provide real-time information on marine mammals observed in the area as necessary.

    Up to four PSOs will be employed. PSO locations will provide an unobstructed view of all water within the shutdown zone, and as much of the Level A and Level B harassment zones as possible. PSO locations are as follows:

    (1) At the pile driving/removal site or best vantage point practicable to monitor the shutdown zones;

    (2) For activities with Level B harassment zones larger than 400 m two additional PSO locations will be used. One will be across from the project location along Inchon Road at Naval Amphibious Base Coronado; and

    (3) Two additional PSOs will be located in a small boat. The boat will conduct a pre-activity survey of the entire monitoring area prior to in-water construction. The boat will start from south of the project area (where potential marine mammal occurrence is lowest) and proceed to the north. When the boat arrives near the northern boundary of the Level B harassment zone (e.g., just north of the western side of the Coronado Bridge as depicted in the Figures in the monitoring plan) it will set up station so the PSOs are best situated to detect any marine mammals that may approach from the north. The two PSOs aboard will split monitoring duties in order to monitor a 360 degree sweep around the vessel with each PSO responsible for 180 degrees of observable area.

    Monitoring will be conducted 30 minutes before, during, and 30 minutes after pile driving/removal activities. In addition, observers shall record all incidents of marine mammal occurrence, regardless of distance from activity, and shall document any behavioral reactions in concert with distance from piles being driven or removed. Pile driving activities include the time to install or remove a single pile or series of piles, as long as the time elapsed between uses of the pile driving or drilling equipment is no more than 30 minutes.

    Hydroacoustic Monitoring and Reporting

    The Navy has volunteered to conduct hydroacoustic monitoring of all pile driving and removal methods. Data will be collected for a representative number of piles (three to five) for each installation or removal method. As part of the below-mentioned report, or in a separate report with the same timelines as above, the Navy will provide an acoustic monitoring report for this work. Hydroacoustic monitoring results can be used to adjust the size of the Level B harassment and monitoring zones after a request is made and approved by NMFS. The acoustic monitoring report must, at minimum, include the following:

    • Hydrophone equipment and methods: recording device, sampling rate, distance (m) from the pile where recordings were made; depth of recording device(s).
    • Type of pile being driven or removed, substrate type, method of driving or removal during recordings.
    • For impact pile driving: Pulse duration and mean, median, and maximum sound levels (dB re: 1µPa): SELcum, peak sound pressure level (SPLpeak), and single-strike sound exposure level (SELs-s).
    • For vibratory removal and other non-impulsive sources: Mean, median, and maximum sound levels (dB re: 1µPa): root mean square sound pressure level (SPLrms), SELcum.
    • Number of strikes (impact) or duration (vibratory or other non-impulsive sources) per pile measured, one-third octave band spectrum and power spectral density plot.

    Reporting

    A draft marine mammal monitoring report will be submitted to NMFS within 90 days after the completion of pile driving and removal activities, or 60 days prior to a requested date of issuance of any future IHAs for projects at the same location, whichever comes first. The report will include an overall description of work completed, a narrative regarding marine mammal sightings, and associated PSO data sheets. Specifically, the report must include:

    • Dates and times (begin and end) of all marine mammal monitoring;
    • Construction activities occurring during each daily observation period, including how many and what type of piles were driven or removed and by what method (i.e., impact or vibratory and if other removal methods were used);
    • Weather parameters and water conditions during each monitoring period (e.g., wind speed, percent cover, visibility, sea state);
    • The number of marine mammals observed, by species, relative to the pile location and if pile driving or removal was occurring at time of sighting;
    • Age and sex class, if possible, of all marine mammals observed;
    • PSO locations during marine mammal monitoring;
    • Distances and bearings of each marine mammal observed to the pile being driven or removed for each sighting (if pile driving or removal was occurring at time of sighting);
    • Description of any marine mammal behavior patterns during observation, including direction of travel and estimated time spent within the Level A and Level B harassment zones while the source was active;
    • Number of individuals of each species (differentiated by month as appropriate) detected within the monitoring zone;
    • Detailed information about any implementation of any mitigation triggered (e.g., shutdowns and delays), a description of specific actions that ensued, and resulting behavior of the animal, if any; andStart Printed Page 80043
    • Description of attempts to distinguish between the number of individual animals taken and the number of incidences of take, such as ability to track groups or individuals.

    If no comments are received from NMFS within 30 days, the draft final report will constitute the final report. If comments are received, a final report addressing NMFS comments must be submitted within 30 days after receipt of comments.

    Reporting Injured or Dead Marine Mammals

    In the event that personnel involved in the construction activities discover an injured or dead marine mammal, the Navy shall report the incident to the Office of Protected Resources (OPR), NMFS and to the regional stranding coordinator as soon as feasible. If the death or injury was clearly caused by the specified activity, the Navy must immediately cease the specified activities until NMFS is able to review the circumstances of the incident and determine what, if any, additional measures are appropriate to ensure compliance with the terms of the IHA. The IHA-holder must not resume their activities until notified by NMFS. The report must include the following information:

    • Time, date, and location (latitude/longitude) of the first discovery (and updated location information if known and applicable);
    • Species identification (if known) or description of the animal(s) involved;
    • Condition of the animal(s) (including carcass condition if the animal is dead);
    • Observed behaviors of the animal(s), if alive;
    • If available, photographs or video footage of the animal(s); and
    • General circumstances under which the animal was discovered.

    Negligible Impact Analysis and Determination

    NMFS has defined negligible impact as an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival (50 CFR 216.103). A negligible impact finding is based on the lack of likely adverse effects on annual rates of recruitment or survival (i.e., population-level effects). An estimate of the number of takes alone is not enough information on which to base an impact determination. In addition to considering estimates of the number of marine mammals that might be “taken” through harassment, NMFS considers other factors, such as the likely nature of any responses (e.g., intensity, duration), the context of any responses (e.g., critical reproductive time or location, migration), as well as effects on habitat, and the likely effectiveness of the mitigation. We also assess the number, intensity, and context of estimated takes by evaluating this information relative to population status. Consistent with the 1989 preamble for NMFS's implementing regulations (54 FR 40338; September 29, 1989), the impacts from other past and ongoing anthropogenic activities are incorporated into this analysis via their impacts on the environmental baseline (e.g., as reflected in the regulatory status of the species, population size and growth rate where known, ongoing sources of human-caused mortality, or ambient noise levels).

    Pile driving activities have the potential to disturb or displace marine mammals. Specifically, the project activities may result in take, in the form of Level B harassment from underwater sounds generated from pile driving and removal. Potential takes could occur if individuals are present in the ensonified zone when these activities are underway.

    The takes from Level B harassment would be due to potential behavioral disturbance, TTS, and PTS. No mortality is anticipated given the nature of the activity and measures designed to minimize the possibility of injury to marine mammals. The potential for harassment is minimized through the construction method and the implementation of the planned mitigation measures (see Proposed Mitigation section).

    The nature of the pile driving project precludes the likelihood of serious injury or mortality. Take would occur within a limited, confined area (south-central San Diego Bay) of the stock's range. Level B harassment will be reduced to the level of least practicable adverse impact through use of mitigation measures described herein. Further the amount of take proposed to be authorized is extremely small when compared to stock abundance.

    Behavioral responses of marine mammals to pile driving at the project site, if any, are expected to be mild and temporary. Marine mammals within the Level B harassment zone may not show any visual cues they are disturbed by activities (as noted during modification to the Kodiak Ferry Dock) or could become alert, avoid the area, leave the area, or display other mild responses that are not observable such as changes in vocalization patterns. Given the short duration of noise-generating activities per day and that pile driving and removal would occur across six months, any harassment would be temporary. There are no other areas or times of known biological importance for any of the affected species.

    In addition, it is unlikely that minor noise effects in a small, localized area of habitat would have any effect on the stocks' ability to recover. In combination, we believe that these factors, as well as the available body of evidence from other similar activities, demonstrate that the potential effects of the specified activities will have only minor, short-term effects on individuals. The specified activities are not expected to impact rates of recruitment or survival and will therefore not result in population-level impacts.

    In summary and as described above, the following factors primarily support our preliminary determination that the impacts resulting from this activity are not expected to adversely affect the species or stock through effects on annual rates of recruitment or survival:

    • No mortality or Level A harassment is anticipated or authorized;
    • No important habitat areas have been identified within the project area;
    • For all species, San Diego Bay is a very small and peripheral part of their range;
    • The Navy would implement mitigation measures such as vibratory driving piles to the maximum extent practicable, soft-starts, and shut downs; and
    • Monitoring reports from similar work in San Diego Bay have documented little to no effect on individuals of the same species impacted by the specified activities.

    Based on the analysis contained herein of the likely effects of the specified activity on marine mammals and their habitat, and taking into consideration the implementation of the proposed monitoring and mitigation measures, NMFS preliminarily finds that the total marine mammal take from the proposed activity will have a negligible impact on all affected marine mammal species or stocks.

    Small Numbers

    As noted above, only small numbers of incidental take may be authorized under section 101(a)(5)(D) of the MMPA for specified activities other than military readiness activities. The MMPA does not define small numbers and so, in practice, where estimated numbers are available, NMFS compares the number of individuals taken to the most appropriate estimation of abundance of the relevant species or stock in our Start Printed Page 80044determination of whether an authorization is limited to small numbers of marine mammals. When the predicted number of individuals to be taken is fewer than one third of the species or stock abundance, the take is considered to be of small numbers. Additionally, other qualitative factors may be considered in the analysis, such as the temporal or spatial scale of the activities.

    The amount of take NMFS proposes to authorize is below one third of the estimated stock abundance of California sea lions (in fact, take of individuals is less than 1% of the abundance of the affected stock). This is likely a conservative estimate because they assume all takes are of different individual animals which is likely not the case. Some individuals may return multiple times in a day, but PSOs would count them as separate takes if they cannot be individually identified.

    Based on the analysis contained herein of the proposed activity (including the proposed mitigation and monitoring measures) and the anticipated take of marine mammals, NMFS preliminarily finds that small numbers of marine mammals will be taken relative to the population size of the affected species or stocks.

    Unmitigable Adverse Impact Analysis and Determination

    There are no relevant subsistence uses of the affected marine mammal stocks or species implicated by this action. Therefore, NMFS has determined that the total taking of affected species or stocks would not have an unmitigable adverse impact on the availability of such species or stocks for taking for subsistence purposes.

    Endangered Species Act

    Section 7(a)(2) of the ESA (16 U.S.C. 1531 et seq.) requires that each Federal agency insure that any action it authorizes, funds, or carries out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of designated critical habitat. To ensure ESA compliance for the issuance of IHAs, NMFS consults internally, in this case with the West Coast Region Protected Resources Division Office, whenever we propose to authorize take for endangered or threatened species.

    No incidental take of ESA-listed species is proposed for authorization or expected to result from this activity. Therefore, NMFS has determined that formal consultation under section 7 of the ESA is not required for this action.

    Proposed Authorization

    As a result of these preliminary determinations, NMFS proposes to issue an IHA to the Navy to conduct the Naval Base San Diego Pier 6 Replacement project in San Diego, CA from October 1, 2021 through September 30, 2022, provided the previously mentioned mitigation, monitoring, and reporting requirements are incorporated. A draft of the proposed IHA can be found at https://www.fisheries.noaa.gov/​permit/​incidental-take-authorizations-under-marine-mammal-protection-act.

    Request for Public Comments

    We request comment on our analyses, the proposed authorization, and any other aspect of this notice of proposed IHA for the proposed Naval Base San Diego Pier 6 Replacement project. We also request at this time comment on the potential renewal of this proposed IHA as described in the paragraph below. Please include with your comments any supporting data or literature citations to help inform decisions on the request for this IHA or a subsequent Renewal IHA.

    On a case-by-case basis, NMFS may issue a one-time one-year Renewal IHA following notice to the public providing an additional 15 days for public comments when (1) up to another year of identical, or nearly identical, activities as described in the Description of Proposed Activity section of this notice is planned or (2) the activities as described in the Description of Proposed Activity section of this notice would not be completed by the time the IHA expires and a Renewal would allow for completion of the activities beyond that described in the Dates and Duration section of this notice, provided all of the following conditions are met:

    • A request for renewal is received no later than 60 days prior to the needed Renewal IHA effective date (recognizing that Renewal IHA expiration date cannot extend beyond one year from expiration of the initial IHA);
    • The request for renewal must include the following:

    (1) An explanation that the activities to be conducted under the requested Renewal IHA are identical to the activities analyzed under the initial IHA, are a subset of the activities, or include changes so minor (e.g., reduction in pile size) that the changes do not affect the previous analyses, mitigation and monitoring requirements, or take estimates (with the exception of reducing the type or amount of take); and

    (2) A preliminary monitoring report showing the results of the required monitoring to date and an explanation showing that the monitoring results do not indicate impacts of a scale or nature not previously analyzed or authorized; and

    • Upon review of the request for Renewal, the status of the affected species or stocks, and any other pertinent information, NMFS determines that there are no more than minor changes in the activities, the mitigation and monitoring measures will remain the same and appropriate, and the findings in the initial IHA remain valid.
    Start Signature

    Dated: December 7, 2020.

    Donna S. Wieting,

    Director, Office of Protected Resources, National Marine Fisheries Service.

    End Signature End Supplemental Information

    [FR Doc. 2020-27225 Filed 12-10-20; 8:45 am]

    BILLING CODE 3510-22-P

Document Information

Published:
12/11/2020
Department:
National Oceanic and Atmospheric Administration
Entry Type:
Notice
Action:
Notice; proposed incidental harassment authorization; request for comments on proposed authorization and possible renewal.
Document Number:
2020-27225
Dates:
Comments and information must be received no later than January 11, 2021.
Pages:
80027-80044 (18 pages)
Docket Numbers:
RTID 0648-XA687
PDF File:
2020-27225.pdf