94-7290. Special Conditions: Cessna Aircraft Company, Model 750 (Citation X) Airplane, Lightning and High-Intensity Radiated Fields  

  • [Federal Register Volume 59, Number 60 (Tuesday, March 29, 1994)]
    [Unknown Section]
    [Page 0]
    From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
    [FR Doc No: 94-7290]
    
    
    [[Page Unknown]]
    
    [Federal Register: March 29, 1994]
    
    
                                                        VOL. 59, NO. 60
    
                                                Tuesday, March 29, 1994
    =======================================================================
    -----------------------------------------------------------------------
    
    DEPARTMENT OF TRANSPORTATION
    
    Federal Aviation Administration
    
    14 CFR Part 25
    
    [Docket No. NM-93; Notice No. SC-94-1-NM]
    
     
    
    Special Conditions: Cessna Aircraft Company, Model 750 (Citation 
    X) Airplane, Lightning and High-Intensity Radiated Fields
    
    AGENCY: Federal Aviation Administration, DOT.
    
    ACTION: Notice of proposed special conditions.
    
    -----------------------------------------------------------------------
    
    SUMMARY: This notice proposes special conditions for the Cessna 
    Aircraft Company (Cessna), Model 750 (Citation X) airplane. This new 
    airplane will utilize new avionics/electronic systems that provide 
    critical data to the flightcrew. The applicable regulations do not 
    contain adequate or appropriate safety standards for the protection of 
    these systems from the effects of lightning and high-intensity radiated 
    fields. These proposed special conditions contain the additional safety 
    standards that the Administrator considers necessary to establish a 
    level of safety equivalent to that established by the existing 
    airworthiness standards.
    
    DATES: Comments must be received on or before May 12, 1994.
    
    ADDRESSES: Comments on this proposal may be mailed in duplicate to: 
    Federal Aviation Administration, Office of the Assistant Chief Counsel, 
    Attn: Rules Docket (ANM-7), Docket No. NM-93, 1601 Lind Avenue SW., 
    Renton, Washington 98055-4056; or delivered in duplicate to the Office 
    of the Assistant Chief Counsel at the above address. Comments must be 
    marked: Docket No. NM-93. Comments may be inspected in the Rules Docket 
    weekdays, except Federal holidays, between 7:30 a.m. and 4 p.m.
    
    FOR FURTHER INFORMATION CONTACT:
    Mark Quam, FAA, Standardization Branch, ANM-113, Transport Airplane 
    Directorate, Aircraft Certification Service, 1601 Lind Avenue SW., 
    Renton, Washington 98055-4056.
    
    SUPPLEMENTARY INFORMATION:
    
    Comments Invited
    
        Interested persons are invited to participate in the making of 
    these proposed special conditions by submitting such written data, 
    views, or arguments as they may desire. Communications should identify 
    the regulatory docket or notice number and be submitted in duplicate to 
    the address specified above. All communications received on or before 
    the closing date for comments will be considered by the Administrator 
    before further rulemaking action is taken on these proposals. The 
    proposals contained in this notice may be changed in light of comments 
    received. All comments submitted will be available in the Rules Docket 
    for examination by interested persons, both before and after the 
    closing date for comments. A report summarizing each substantive public 
    contact with FAA personnel concerning this rulemaking will be filed in 
    the docket. Persons wishing the FAA to acknowledge receipt of their 
    comments submitted in response to this notice must submit with those 
    comments a self-addressed, stamped postcard on which the following 
    statement is made: ``Comments to Docket No. NM-93.'' The postcard will 
    be date stamped and returned to the commenter.
    
    Background
    
        On October 15, 1991, Cessna Aircraft Company (Cessna), 6030 Cessna 
    Blvd., P.O. Box 7704, Wichita, KS 67277-7704, applied for a new type 
    certificate in the transport airplane category for the Model 750 
    (Citation X) airplane. The Cessna Model 750 is a T-tail, low swept 
    wing, medium-sized business jet powered by two GMA-3007C turbofan 
    engines mounted on pylons extending from the aft fuselage. Each engine 
    will be capable of delivering 6,000 pounds thrust. The flight controls 
    will be powered and capable of manual reversion. The airplane has a 
    seating capacity of up to twelve passengers, and a maximum takeoff 
    weight of 31,000 pounds.
    
    Type Certification Basis
    
        Under the provisions of Sec. 21.17 of the FAR, Cessna must show, 
    except as provided in Sec. 25.2, that the Model 750 (Citation X) meets 
    the applicable provisions of part 25, effective February 1, 1965, as 
    amended by Amendments 25-1 through 25-74. In addition, the proposed 
    certification basis for the Model 750 includes part 34, effective 
    September 10, 1990, plus any amendments in effect at the time of 
    certification; and part 36, effective December 1, 1969, as amended by 
    Amendment 36-1 through the amendment in effect at the time of 
    certification. No exemptions are anticipated. The special conditions 
    that may be developed as a result of this notice will form an 
    additional part of the type certification basis. In addition, the 
    certification basis may include other special conditions that are not 
    relevant to these proposed special conditions.
        If the Administrator finds that the applicable airworthiness 
    regulations (i.e., part 25, as amended) do not contain adequate or 
    appropriate safety standards for the Cessna Model 750 because of a 
    novel or unusual design feature, special conditions are prescribed 
    under the provisions of Sec. 21.16 to establish a level of safety 
    equivalent to that established in the regulations.
        Special conditions, as appropriate, are issued in accordance with 
    Sec. 11.49 of the FAR after public notice, as required by Secs. 11.28 
    and 11.29, and become part of the type certification basis in 
    accordance with Sec. 21.17(a)(2).
    
    Novel or Unusual Design Features
    
        The Model 750 incorporates new avionic/electronic installations, 
    including a digital Electronic Flight Instrument System (EFIS), Air 
    data System, Attitude and Heading Reference System (AHRS), Navigation 
    and Communication System, Autopilot System, and a Full Authority 
    Digital Engine Control (FADEC) system that controls critical engine 
    parameters. These systems may be vulnerable to lightning and high-
    intensity radiated fields external to the airplane.
    
    Discussion
    
        The existing lightning protection airworthiness certification 
    requirements are insufficient to provide an acceptable level of safety 
    with new technology avionic and electronic systems. There are two 
    regulations that specifically pertain to lightning protection: one for 
    the airframe in general (Sec. 25.581), and the other for fuel system 
    protection (Sec. 25.954). There are, however, no regulations that deal 
    specifically with protection of electrical and electronic systems from 
    lightning. The loss of a critical function of these systems due to 
    lightning would prevent continued safe flight and landing of the 
    airplane. Although the loss of an essential function would not prevent 
    continued safe flight and landing, it could significantly impact the 
    safety level of the airplane.
        There is also no specific regulation that addresses protection 
    requirements for electrical and electronic systems from HIRF. Increased 
    power levels from ground based radio transmitters and the growing use 
    of sensitive electrical and electronic systems to command and control 
    airplanes have made it necessary to provide adequate protection.
        To ensure that a level of safety is achieved equivalent to that 
    intended by the regulations incorporated by reference, special 
    conditions are proposed for the Cessna Model 750, which would require 
    that new technology electrical and electronic systems, such as the 
    EFIS, FADEC, AHRS, etc., be designed and installed to preclude 
    component damage and interruption of function due to both the direct 
    and indirect effects of lightning and HIRF.
    
    Lightning
    
        To provide a means of compliance with these proposed special 
    conditions, clarification of the threat definition of lightning is 
    needed. The following ``threat definition,'' based on FAA Advisory 
    Circular 20-136, Protection of Aircraft Electrical/Electronic Systems 
    Against the Indirect Effects of Lightning, dated March 5, 1990, is 
    proposed as a basis to use in demonstrating compliance with the 
    lightning protection special condition, with the exception of the 
    multiple burst environment, which has been changed to agree with the 
    latest recommendation from the Society of Automotive Engineers (SAE) 
    AE4L lightning committee.
        The lightning current waveforms (Components A, D, and H) defined 
    below, along with the voltage waveforms in AC 20-53A, will provide a 
    consistent and reasonable standard that is acceptable for use in 
    evaluating the effects of lightning on the airplane. These waveforms 
    depict threats that are external to the airplane. The effect of these 
    threats on the airplane and its systems depends upon several factors, 
    including installation configuration, materials, shielding, airplane 
    geometry, etc. Therefore, tests (including tests on the completed 
    airplane or an adequate simulation) and/or verified analyses need to be 
    conducted in order to obtain the resultant internal threat to the 
    installed systems. The electronic systems may then be evaluated with 
    this internal threat in order to determine their susceptibility to 
    upset and/or malfunction.
        To evaluate the induced effects to these systems, three 
    considerations are required:
        1. First Return Stroke: (Severe Strike--Component A, or Restrike-
    Component D). This external threat needs to be evaluated to obtain the 
    resultant internal threat and to verify that the level of the induced 
    currents and voltages is sufficiently below the equipment ``hardness'' 
    level.
        2. Multiple Stroke Flash: (\1/2\ Component D). A lightning strike 
    is often composed of a number of successive strokes, referred to as 
    multiple strokes. Although multiple strokes are not necessarily a 
    salient factor in a damage assessment, they can be the primary factor 
    in a system upset analysis. Multiple strokes can induce a sequence of 
    transients over an extended period of time. While a single event upset 
    of input/output signals may not affect system performance, multiple 
    signal upsets over an extended period of time (2 seconds) may affect 
    the systems under consideration. Repetitive pulse testing and/or 
    analysis needs to be carried out in response to the multiple stroke 
    environment to demonstrate that the system response meets the safety 
    objective. This external multiple stroke environment consists of 24 
    pulses and is described as a single Component A followed by 23 randomly 
    spaced restrikes of \1/2\ magnitude of Component D (peak amplitude of 
    50,000 amps). The 23 restrikes are distributed over a period of up to 2 
    seconds according to the following constraints: (1) The minimum time 
    between subsequent strokes is 10ms, and (2) the maximum time between 
    subsequent strokes is 200ms. An analysis or test needs to be 
    accomplished in order to obtain the resultant internal threat 
    environment for the system under evaluation.
        3. Multiple Burst: (Component H). In-flight data-gathering projects 
    have shown bursts of multiple, low amplitude, fast rates of rise, short 
    duration pulses accompanying the airplane lightning strike process. 
    While insufficient energy exists in these pulses to cause physical 
    damage, it is possible that transients resulting from this environment 
    may cause upset to some digital processing systems.
        The representation of this interference environment is a repetition 
    of short duration, low amplitude, high peak rate of rise, double 
    exponential pulses that represent the multiple bursts of current pulses 
    observed in these flight data gathering projects. This component is 
    intended for an analytical (or test) assessment of functional upset of 
    the system. Again, it is necessary that this component be translated 
    into an internal environmental threat in order to be used. This 
    ``Multiple Burst'' consists of repetitive Component H waveforms in 3 
    sets of 20 pulses each. The minimum time between individual Component H 
    pulses within a burst is 50 microseconds, the maximum is 1,000 
    microseconds. The 3 bursts are distributed according to the following 
    constraints: (1) The minimum period between bursts is 30ms, and (2) the 
    maximum period between bursts is 300ms. The individual ``Multiple 
    Burst'' Component H waveform is defined below.
        The following current waveforms constitute the ``Severe Strike'' 
    (Component A), ``Restrike'' (Component D), ``Multiple Stroke'' (\1/2\ 
    Component D), and the ``Multiple Burst'' (Component H).
        These components are defined by the following double exponential 
    equation:
    
    i(t)=Io (e-at-e-bt)
    
    where:
    
    t=time in seconds,
    i=current in amperes, and
    
    
                                                                                                                    
                                                                                 Multiple stroke                    
                                            Severe strike         Restrike       (\1/2\ component    Multiple burst 
                                            (component A)      (component D)            D)           (component H)  
    ----------------------------------------------------------------------------------------------------------------
    Io, amp                            =        218,810            109,405             54,703             10,572    
    a, sec-1                           =         11,354             22,708             22,708            187,191    
    b, sec-1                           =        647,265          1,294,530          1,294,530         19,105,100    
    
    
    This equation produces the following characteristics:                                                           
                                                                                                                    
    ipeak                  =  200 KA                100 KA                50 KA                 10 KA               
    and,                                                                                                            
                                                                                                                    
    (di/dt)max(amp/sec)    =  1.4 x 1011            1.4 x 1011            0.7 x 1011            2.0 x 1011          
                              @t=0+sec              @t=0+sec              @t=0+sec              @t=0+sec            
    di/dt, (amp/sec)       =  1.0 x 1011            1.0 x 1011            0.5 x 1011                                
                              @t=.5s       @t=.25s      @t=.25s                          
    Action Integral        =  2.0 x 106             0.25 x 106            0.0625 x 106                              
     (amp2sec)                                                                                                      
                                                                                                                    
    
    High-Intensity Radiated Fields (HIRF)
    
        With the trend toward increased power levels from ground based 
    transmitters, plus the advent of space and satellite communications, 
    coupled with electronic command and control of the airplane, the 
    immunity of critical digital avionics systems to HIRF must be 
    established.
        It is not possible to precisely define the HIRF to which the 
    airplane will be exposed in service. There is also uncertainty 
    concerning the effectiveness of airframe shielding for HIRF. 
    Furthermore, coupling of electromagnetic energy to cockpit-installed 
    equipment through the cockpit window apertures is undefined. Based on 
    surveys and analysis of existing HIRF emitters, an adequate level of 
    protection exists when compliance with the HIRF protection special 
    condition is shown with either paragraphs 1 or 2 below:
        1. A minimum threat of 100 volts per meter peak electric field 
    strength from 10 KHz to 18 GHz.
        a. The threat must be applied to the system elements and their 
    associated wiring harnesses without the benefit of airframe shielding.
        b. Demonstration of this level of protection is established through 
    system tests and analysis.
        2. A threat external to the airframe of the following field 
    strengths for the frequency ranges indicated. 
    
    ------------------------------------------------------------------------
                                                         Peak (V/   Average 
                        Frequency                          M)        (V/M)  
    ------------------------------------------------------------------------
    10 KHz-100 KHz....................................         50         50
    100 KHz-500 KHz...................................         60         60
    500 KHz-2000 KHz..................................         70         70
    2 MHz-30 MHz......................................        200        200
    30 MHz-70 MHz.....................................         30         30
    70 MHz-100 MHz....................................         30         30
    100 MHz-200 MHz...................................        150         33
    200 MHz-400 MHz...................................         70         70
    400 MHz-700 MHz...................................      4,020        935
    700 MHz-1000 MHz..................................      1,700        170
    1 GHz-2 GHz.......................................      5,000        990
    2 GHz-4 GHz.......................................      6,680        840
    4 GHz-6 GHz.......................................      6,850        310
    6 GHz-8 GHz.......................................      3,600        670
    8 GHz-12 GHz......................................      3,500      1,270
    12 GHz-18 GHz.....................................      3,500        360
    18 GHz-40 GHz.....................................      2,100       750 
    ------------------------------------------------------------------------
    
        The envelope given in paragraph 2 above is a revision to the 
    envelop used in previously issued special conditions in other 
    certification projects. It is based on new data and SAE AE4R 
    subcommittee recommendations. This revised envelope includes data from 
    Western Europe and the U.S.
    
    Conlcusion
    
        This action affects only certain design features on the Cessna 
    Model 750 (Citation X) airplane. It is not a rule of general 
    applicability and affects only the manufacturer who applied to the FAA 
    for approval of these features on the airplane.
    
    List of Subjects in 14 CFR Part 25
    
        Aircraft, Aviation safety, Federal Aviation Administration, 
    Reporting and recordkeeping requirements.
    
        The authority citation for these proposed special conditions is as 
    follows:
    
        Authority: 49 U.S.C. app. 1344, 1348(c), 1352, 1354(a), 1355, 
    1421 through 1431, 1502, 1651(b)(2), 42 U.S.C. 1857f-10, 4321 et 
    seq.; E.O. 11514; and 49 U.S.C. 106(g).
    
    The Proposed Special Conditions
    
        Accordingly, the Federal Aviation Administration (FAA) proposes the 
    following special conditions as part of the type certification basis 
    for the Cessna Model 750 (Citation X) series airplanes.
        1. Lightning protection: (a) Each electrical and electronic system 
    that performs critical functions must be designed and installed to 
    ensure that the operation and operational capability of these systems 
    to perform critical functions are not adversely affected when the 
    airplane is exposed to lightning.
        (b) Each essential function of electrical or electronic systems or 
    installations must be protected to ensure that the function can be 
    recovered in a timely manner after the airplane has been exposed to 
    lightning.
        2. Protection from unwanted effects of High-Intensity Radiated 
    Fields (HIRF). Each electrical and electronic system that performs 
    critical functions must be designed and installed to ensure that the 
    operation and operational capability of these systems to perform 
    critical functions are not adversely affected when the airplane is 
    exposed to high-intensity radiated fields.
        3. For the purpose of these special conditions, the following 
    definitions apply:
        Critical functions. Functions whose failure would whose failure 
    would contribute to or cause a failure condition that would prevent the 
    continued safe flight and landing of the airplane.
        Essential functions. Functions whose failure could contribute to or 
    cause a failure condition that would significantly impact the safety of 
    the airplane or the ability of the flightcrew to cope with adverse 
    operating conditions.
    
        Issued in Renton, Washington, on March 11, 1994.
    Darrell M. Pederson,
    Acting Manager, Transport Airplane Directorate, Aircraft Certification 
    Service, ANM-100.
    [FR Doc. 94-7290 Filed 3-28-94; 8:45 am]
    BILLING CODE 4910-13-M
    
    
    

Document Information

Published:
03/29/1994
Department:
Federal Aviation Administration
Entry Type:
Uncategorized Document
Action:
Notice of proposed special conditions.
Document Number:
94-7290
Dates:
Comments must be received on or before May 12, 1994.
Pages:
0-0 (1 pages)
Docket Numbers:
Federal Register: March 29, 1994, Docket No. NM-93, Notice No. SC-94-1-NM
CFR: (1)
14 CFR 11.49