96-9467. Retrofit/Rebuild Requirements for 1993 and Earlier Model Year Urban Buses; Approval of a Notification of Intent to Certify Equipment  

  • [Federal Register Volume 61, Number 75 (Wednesday, April 17, 1996)]
    [Notices]
    [Pages 16773-16779]
    From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
    [FR Doc No: 96-9467]
    
    
    
    =======================================================================
    -----------------------------------------------------------------------
    
    ENVIRONMENTAL PROTECTION AGENCY
    
    [FRL-5458-4]
    
    
    Retrofit/Rebuild Requirements for 1993 and Earlier Model Year 
    Urban Buses; Approval of a Notification of Intent to Certify Equipment
    
    AGENCY: Environmental Protection Agency.
    
    ACTION: Notice of Agency Certification of Equipment for the Urban Bus 
    Retrofit/Rebuild Program.
    
    -----------------------------------------------------------------------
    
    SUMMARY: The Agency received a notification of intent to certify 
    equipment signed September 6, 1996 from Johnson Matthey Inc. (Johnson 
    Matthey) with principal place of business at 460 East Swedesford Road, 
    Wayne, PA 19087-1880 for certification of urban bus retrofit/rebuild 
    equipment pursuant to 40 CFR 85.1401-85.1415. The equipment is 
    applicable to petroleum-fueled Detroit Diesel Corporation (DDC) two-
    cycle engines originally installed in an urban bus from model year 1979 
    to model year 1993, exclusive of the DDC 6L71TA 1990 model year 
    engines, all alcohol fueled engines, and models which were manufactured 
    with particulate trap devices (see Table A). On December 13, 1995, EPA 
    published a notice in the Federal Register that the notification had 
    been received and made the notification available for public review and 
    comment for a period of 45-days (60 FR 64048). EPA has completed its 
    review of this notification, and the comments received, and the 
    Director of the Engine Programs and Compliance Division has determined 
    that it meets all the requirements for certification. Accordingly, EPA 
    approves the certification of this equipment.
         The certified equipment provides 25 percent or greater reduction 
    in exhaust emissions of particulate matter (PM) for the engines for 
    which it is certified.
         The Johnson Matthey notification, as well as other materials 
    specifically relevant to it, are contained in Public Docket A-93-42, 
    category XI, entitled ``Certification of Urban Bus Retrofit/Rebuild 
    Equipment''. This docket is located in room M-1500, Waterside Mall 
    (Ground Floor), U.S. Environmental Protection Agency, 401 M Street SW, 
    Washington, DC 20460.
         Docket items may be inspected from 8:00 a.m. until 5:30 p.m., 
    Monday through Friday. As provided in 40 CFR Part 2, a reasonable fee 
    may be charged by the Agency for copying docket materials.
    
    DATES: The date of this notice April 17, 1996 is the effective date of 
    certification for the equipment described in the Johnson Matthey 
    notification. This certified equipment may be used immediately by urban 
    bus operators. Operators who have chosen to comply with program 1 or 
    program 2 can utilize this equipment or other equipment that is 
    certified for any engine that is listed in Table A that undergoes 
    rebuild.
    
    FOR FURTHER INFORMATION CONTACT: Anthony Erb, Engine Compliance 
    Programs Group, Engine Program & Compliance Division (6403J), U.S. 
    Environmental Protection Agency, 401 M St. SW, Washington, D.C. 20460. 
    Telephone: (202) 233-9259.
    
    SUPPLEMENTARY INFORMATION:
    
    I. Background
    
        By a notification of intent to certify signed September 6, 1995, 
    Johnson Matthey applied for certification of equipment applicable to 
    petroleum-fueled Detroit Diesel Corporation (DDC) two-cycle engines 
    originally installed in an urban bus from model year 1979 to model year 
    1993, exclusive of the DDC 6L71TA 1990 model year engines and models 
    which were manufactured with particulate trap devices or alcohol fueled 
    (see Table A). The notification of intent to certify states that the 
    equipment being certified is a catalytic exhaust muffler (CEM). The CEM 
    contains an oxidation catalyst developed specifically for diesel 
    applications, packaged as a direct replacement for the muffler. The 
    application demonstrates that the candidate equipment provides a 25 
    percent or greater reduction in emissions of particulate matter (PM) 
    for petroleum fueled diesel engines relative to an original engine 
    configuration with no after treatment installed. Certification is 
    applicable to engines that are rebuilt to original specifications, or 
    in-use engines that are not rebuilt at the time the CEM is installed 
    provided the engine meets engine oil consumption limits specified by 
    Johnson Matthey. According to Johnson Matthey, a 6V engine that uses 
    more than one quart of oil per 10 hours of operation, or an 8V engine 
    that uses more than 1.5 quarts of oil per 10 hours of operation, must 
    be rebuilt. Johnson Matthey is also certifying a 25 percent reduction 
    in PM for engines that are retrofit/rebuilt with certified new rebuild 
    kits that do not include after treatment devices. This will apply only 
    when the CEM is installed at the same time the retrofit/rebuild occurs. 
    Currently, this applies to the DDC retrofit/rebuild kit which was 
    certified on October 2, 1995 (60 FR 51472).
        Certification of the Johnson Matthey CEM does not trigger any new 
    program requirements for applicable engines, as the requirement to use 
    equipment certified to achieve at least a 25% reduction has already 
    been triggered for these engines. Johnson Matthey stated that it would 
    offer the equipment for less than $2000 (in 1992 dollars).
        The CEM contains an oxidation catalyst developed specifically for 
    diesel applications, packaged as a direct replacement for the muffler.
        Using engine dynamometer testing in accordance with the Federal 
    Test Procedure for heavy-duty diesel engines, Johnson Matthey 
    documented significant reductions in PM emissions after retrofit. This 
    amounted to a 50% PM reduction in the pre-rebuild retrofit test and a 
    38% reduction in the post-rebuild retrofit test. The test data show 
    that engines with the certified retrofit equipment installed comply 
    with applicable Federal emission standards for hydrocarbon (H.C.), 
    carbon monoxide (CO), oxides of nitrogen (NO), and smoke emissions in 
    addition to demonstrating reductions in PM exhaust emissions.
    
    [[Page 16774]]
    
    
    
                                                                  Table A. Certification Levels                                                             
    --------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                         PM level                                                                           
                       Engine models                      Model year     \1\ with                   Code                                Family              
    -----------------------------------------------------------------------CEM------------------------------------------------------------------------------
    6V92TA MUI \2\                                       1979-87              0.38  All                                  All                                
                                                         1988-1989            0.23  All                                  All                                
    6V92TA DDEC I                                        1986-89              0.23  All                                  All                                
    6V92TA DDEC II                                       1988-91              0.23  All                                  All                                
                                                         1992-93              0.19  All                                  All                                
    6V71N                                                1973-87              0.38  All                                  All                                
    6V71N                                                1988-89              0.38  All                                  All                                
    6V71T                                                1985-86              0.38  All                                  All                                
    8V71N                                                1973-84              0.38  All                                  All                                
    6L71TA                                               1988-89              0.23  All                                  All                                
    6LV71TA DDEC                                         1990-91              0.23  All                                  All                                
    8V92TA                                               1979-87              0.38  All                                  8V92TA                             
                                                           1988               0.29  All                                  8V92TA                             
    8V92TA-DD                                              1988               0.31  All                                  8V92TA-DDEC II                     
    8V92TA                                                 1989               0.35  9E70                                 KDD0736FWH9                        
    8V92TA                                                 1989               0.29  9A90                                 KDD0736FWH9                        
    8V92TA                                                 1989               0.26  9G85                                 KDD0736FWH9                        
    8V92TA DDEC                                            1989               0.31  1A                                   KDD0736FZH4                        
    8V92TA                                                 1990               0.35  9E70                                 LDD0736FAH9                        
    8V92TA DDEC                                            1990               0.37  1A                                   LDD0736FZH3                        
    8V92TA DDEC                                            1991               0.19  1A or 5A                             MDD0736FZH2                        
    8V92TA DDEC                                          1992-93              0.16  1D                                   NDD0736FZH1 & PDD0736FZHX          
    8V92TA DDEC                                          1992-93              0.22  6A                                   NDD0736FZH1 & PDD0736FZHX          
    8V92TA DDEC                                          1992-93              0.15  5A                                   NDD0736FZH1 & PDD0736FZHX          
    8V92TA DDEC                                          1992-93              0.19  1A                                   NDD0736FZH1 & PDD0736FZHX          
    --------------------------------------------------------------------------------------------------------------------------------------------------------
    \1\ The original PM certification levels for the 1991 6V92TA DDEC II, 6LV71TA DDEC and 8V92TA DDEC engine models are based on Federal Emission Limits   
      (FELs) under the averaging, banking and trading program. These limits are higher than the 1991 PM standard of 0.25 g/bhp-hr. The PM level listed in   
      this table for the engines that are equipped with the CEM provide at least a 25% reduction from the original certification levels. The 1992 to 1993   
      6V92TA DDEC II and 8V92TA DDEC engine models were also certified using FELs under the trading and banking program and likewise the PM levels for the  
      engines equipped with the CEM represent at least a 25% reduction from the original certification levels.                                              
    \2\ For 6V92TA MUI models that are rebuilt using a certified DDC emissions retrofit kit, Johnson Matthey is certifying the PM engine emissions to a     
      level of 0.22g/bhp-hr for the 1979 to 1987 models and to a level of 0.17 g/bhp-hr for the 1988-1989 models provided the CEM is installed at the same  
      time the rebuild with the DDC upgrade takes place. The DDC upgrade kit certification notification was published in the Federal Register on October 2, 
      1995 (60FR51472).                                                                                                                                     
    
        Under Program 1, all rebuilds of applicable engines must use 
    equipment certified to reduce PM levels by at least 25 percent. This 
    requirement will continue for the applicable engines until such time as 
    it is superseded by equipment that is certified to trigger the 0.10 g/
    bhp-hr emission standard for less than a life cycle cost of $7,940 (in 
    1992 dollars).
        Johnson Matthey has established PM certification levels as 
    specified in Table A for this equipment. Operators who choose to comply 
    with Program 2 and install this equipment, will use the specified PM 
    emission levels in their calculation of fleet level attained.
    
    II. Summary and Analysis of Comments
    
        EPA received comments from two parties on this notification. The 
    Detroit Diesel Corporation (DDC) had a number of comments in the 
    following areas: engines models covered by the application, 
    certification of equipment for use on different stages of engine 
    rebuild, test engine selection and extrapolation of test results, 
    certified emission levels and representivity of test data. The 
    Engelhard Corporation commented on the following areas: incomplete 
    parts list, modification of the manufacturers specification, 
    representivity of test data, and public health risk assessment.
        DDC stated that certain engines that appear to be covered by 
    Johnson Matthey's certification request cannot be included in the final 
    certification, specifically 6V-92TA DDEC alcohol fueled engines for 
    urban bus applications and 1992 and 1993 engines which were certified 
    with particulate trap systems. EPA agrees that this is the case and 
    these engines are not covered under this certification. DDC also stated 
    that the 8V-92TA should not be included in the coverage under this 
    certification as they are too large for use in urban buses. EPA agrees 
    that engines this large will generally not be installed in urban buses. 
    However, if any of these engines are in fact installed in urban buses, 
    they are subject to the retrofit/rebuild requirements. Therefore, this 
    engine is included in the certification, but will only apply when the 
    8V-92TA is installed in an urban bus. DDC also notes that 6V-92TA DDEC 
    engines equipped with particulate traps do not appear to be included in 
    the certification request, and should not be included. EPA agrees that 
    Johnson Matthey did not intend to certify its equipment for use on 6V-
    92TA engines with particulate traps.
        In the notification, Johnson Matthey seeks to certify engines which 
    are not in need of rebuild based upon specified engine calibrations. 
    DDC has stated that certification should be approved only with respect 
    to engines that have been rebuilt to original specifications as the 
    retrofit/rebuild requirements do not apply until the operator rebuilds 
    an engine. DDC agreed that under program 2 operators could conceivably 
    install certified add-on equipment without rebuilding the base engine 
    and use the certified emission level in their fleet averaging, but 
    expressed concerns that the engine may have worn cylinders or fuel 
    injection components in need of rebuild, and as a result the engine out 
    PM emissions may be high. DDC stated that engine wear conditions would 
    create difficulty in achieving the
    
    [[Page 16775]]
    
    certification level when applying the CEM to an engine which has not 
    been rebuilt. DDC and Engelhard expressed concerns about the low 
    emission level of the pre-rebuild engine that was used in baseline 
    tests for this application.
        DDC noted that it would not be appropriate to approve the 
    certification on engines which have been rebuilt using the DDC 
    certified emission upgrade kits as no reductions were made in the PM 
    emission levels stated in the notice. DDC stated its belief that the 
    addition of the CEM to an engine already rebuilt using the certified 
    DDC kit will provide incremental PM reduction, but that Johnson Matthey 
    must certify to a level that has been demonstrated using both the DDC 
    upgrade kit and the CEM. Further, Johnson Matthey had not provided the 
    emission performance warranty for this emission level and that Johnson 
    Matthey must accept all liability associated with this warranty. DDC 
    would warrant only for emission defects.
        DDC's claim that program requirements do not start until an 
    operator rebuilds an engine is only partly correct. Operators choosing 
    to comply with program 1 are not required to take any action until an 
    affected engine is rebuilt or replaced. However, operators choosing to 
    comply with program 2 must ensure their fleet is equal to or less than 
    their target fleet level at all times. Thus, program requirements apply 
    continuously to program 2 operators. In addition, if an operator 
    desires to be able to change between programs, the regulations require 
    that both programs be complied with prior to the switch. Johnson 
    Matthey has supplied test data in the application which demonstrates 
    that engine rebuild is not necessary to ensure a 25% PM reduction with 
    the CEM installed, allowing program 2 operators to utilize this 
    equipment. Furthermore, Johnson Matthey has addressed the concern that 
    engine wear might prevent an engine from achieving the PM level to 
    which it is certified by providing an oil consumption criteria. Engines 
    which exceed this criteria are presumably worn, and must be rebuilt in 
    order to install the CEM to meet program requirements.
        While it is true that program one requirements become effective 
    when the engine is rebuilt, EPA does not want to stop an operator from 
    taking the initiative to install certified equipment prior the time it 
    is actually required under the regulations. EPA believes that the 
    addition of the CEM would provide some incremental benefit to an in-use 
    engine prior to the time a rebuild is found necessary. Therefore, in 
    the interest of cleaner air, EPA will allow program one participants to 
    install certified equipment aftertreatment prior to time a rebuild is 
    found necessary in order to allow for an incremental reduction of PM 
    emission in the interim.
        In regard to DDC's concerns that engine wear needs to be evaluated 
    prior to installing this equipment, Johnson Matthey has modified its 
    application to remove the language referring to calibrations which were 
    stated to be vague and unenforceable and will instead require that 
    operators determine the oil consumption rate for an engine prior to 
    installing the CEM in order to determine engine wear and condition. If 
    this rate of consumption exceeds 1.5 quarts of oil consumption per 10 
    hours of operation for 6V engines or 2.0 quarts of oil consumption per 
    10 hours of operation for 8V engines, Johnson Matthey will require that 
    the engine be rebuilt prior to CEM installation in order to address 
    these concerns. Furthermore, Johnson Matthey will be responsible for 
    meeting the performance warranty for a period of 150,000 miles on each 
    engine under this certification. EPA believes that operators will 
    rebuild engines when necessary in order to keep their fleet in 
    reasonable operating condition. The decision to rebuild will not be 
    affected by the option to install a catalyst. Rather, operators will 
    only choose to install the catalyst in order to reduce emissions, and 
    not in place of a needed rebuild. It is noted that the testing data 
    provided for a 50% reduction in the pre-rebuild engine and a 38% 
    reduction in the case where the engine was rebuilt. Based on these 
    levels of reduction, it is apparent there should be ample margin 
    between the in-use emissions of an engine that the operator finds is 
    not in need of a rebuild to reasonably project that the levels stated 
    in Table A can be met.
        Both Engelhard and DDC commented on the low emission level of the 
    engine that was used for baseline testing. Johnson Matthey selected an 
    engine that was normally used in the transit industry. Although the 
    pre-rebuild level does appear low (0.44 g/bhp-hr PM), this engine was 
    not modified or adjusted prior to the baseline test. Further, nothing 
    in the engine's history indicates that it is not a representative urban 
    bus engine. Information from the transit company and Johnson Matthey 
    indicates that the engine was properly maintained in accordance with 
    industry practices. Therefore, EPA finds the data to be acceptable as 
    well.
        With regard to the application of the Johnson Matthey CEM to 
    engines which were upgraded using DDC certified rebuild kits, Johnson 
    Matthey has provided revised language in the application to warrant the 
    emissions performance for these engines to reduced emission levels of 
    0.22 g/bhp-hr PM for the 1979 to 1987 engines and 0.17 g/bhp-hr for the 
    1988 and 1989 engines. These levels are included in Table A herein. 
    This should address the DDC concerns in this area.
        With regard to the issues raised by DDC concerning test engine 
    selection and extrapolation of test results, DDC stated that the 
    testing was done on a used engine prior to rebuild and after rebuild 
    using DDC replacement parts. However, the rebuild was incomplete and 
    did not put the engine into any configuration which had been certified. 
    Since no testing was reported using either an unused engine or an in-
    use engine that was newly rebuilt to its original configuration, DDC 
    has stated that it does not appear that Johnson Matthey fulfilled the 
    requirements of 40 CFR section 85.1406 (a)(v). Engelhard also commented 
    that it disputed whether the application represented a standard 
    rebuild.
        In response to these issues, Johnson Matthey has provided 
    documentation that it attempted to rebuild the engine to a 
    configuration which would be normal for those engines currently in the 
    field. Since the original build date of the test engine a number of 
    changes were made in the field in accordance with DDC guidance. In 
    undertaking the rebuild, Johnson Matthey attempted to rebuild the 
    engine to the standard that exists for engines in the field. Johnson 
    Matthey has provided numerous pages from parts and engine references 
    which document that the parts installed are in accordance with 
    recommended field guidance. This documentation is included in the 
    docket.
        It is noted that a change in horsepower was made during the engine 
    rebuild. This change in horsepower has evidently caused confusion 
    regarding the final engine rebuild configuration. After consultation 
    with EPA, during the rebuild the engine horsepower was modified to 277 
    horsepower vs. the 253 horsepower of the original engine. It was 
    believed that more urban bus engines exist in the field with 277 
    horsepower, and that this would be more representative of the existing 
    in-use urban bus fleet and this change was made simply to make the 
    engine more representative of the fleets that exist in the field. 
    Consequently, EPA believes that this change in horsepower caused the 
    apparent confusion relative to the rebuild status of this engine and 
    that Johnson Matthey has provided
    
    [[Page 16776]]
    
    documentation that the rebuild represents a standard rebuild for the 
    277 horsepower engine in accordance with the requirements of section 
    85.1406.
        DDC commented that the certifier appears to be in conformance with 
    the requirements of EPA's ``worst case engine configuration'' 
    requirements as stated in 40 CFR section 85.1406 (a)(2). However, DDC 
    also stated that EPA only considered trap technology in developing the 
    definition of worst case engine configuration, and noted that 
    particulate traps remove both the volatile and non-volatile particulate 
    components but that catalysts only reduce volatile particulate.
        DDC stated that for catalyst technology, worst case should not be 
    based on total particulate but rather on the engine with the lowest 
    volatile particulate fraction and that EPA should modify the definition 
    in the regulations.
        Trap technology was discussed in the preamble language to the Urban 
    Bus Retrofit/Rebuild rule. EPA also referenced aftertreatment devices 
    in this language and EPA obviously considers catalysts to be 
    aftertreatment devices. EPA, at this time, does not have information 
    that would break down engines into groups having the highest volatile 
    or lowest volatile composition and none was supplied with the comments. 
    Further, revision of the definition in the regulation will not take 
    place during this notification review, but would instead take place in 
    a regulatory amendment process based upon information received. 
    However, in the meantime, EPA will continue to interpret the worst case 
    definition to apply for both trap and catalyst technology.
        With regard to certified emission levels, DDC commented that the 
    proposed certification levels do not represent a full 25% reduction, 
    and cited an example where only a 20% reduction was present in the 
    table for 1979 to 1987 for 8V-92TA engines. In addition, for the 1991 
    code 5A 8V92TA DDEC engine, the original certification testing yielded 
    a PM emission level of 0.20 g/bhp-hr and the proposed certification 
    level of 0.19 g/bhp-hr given in Table A represents only a 5% reduction.
        The pre-rebuild levels listed in Sec. 85.1403(c)(1)(iii)(A) were 
    determined by EPA based on certification results or engineering data 
    and judgement. In Table A, Johnson Matthey has listed the PM levels it 
    is certifying to for listed models and years. In a number of instances 
    the certification level shown represents a 25% reduction from the 
    levels that were listed in Sec. 85.1403(c)(1)(iii)(A). In other 
    instances, the number reflects a 25% reduction from the level that was 
    certified by DDC during new engine certification. In the case of the 
    1979-1987 8V-92TA models, the certification level was not directly 
    listed in Sec. 85.1403 (c)(1)(iii)(A). However, there is a designation 
    for ``other engines'' which is listed as 0.50 g/bhp-hr PM.
        In the case for the 1991 8V92TA DDEC engine the original 
    certification testing by DDC yielded a PM emission level of 0.20 g/bhp-
    hr. However, DDC certified the engine to a level 0.37 g/bhp-hr level 
    under the averaging, banking and trading program. Therefore, the 
    proposed certification level of 0.19 g/bhp-hr PM provides for more than 
    a 25 % reduction from the original DDC certification level for this 
    engine. In the case of the 1979-1987 8V92TA engines, the level used by 
    Johnson Matthey was based on the level that was approved under a 
    previous application. In that application, the Engelhard Corporation 
    certified this engine model to a PM level of 0.40 g/bhp-hr level based 
    on what it projected to be a reasonable reduction. EPA accepted this 
    level and no comments were received on this during the review or post 
    certification time frame. However, based on DDC's comment and lacking 
    more specific information relative to the original emission levels of 
    this engine, Johnson Matthey has amended its application and Table A 
    has been revised to provide a certification level of 0.38 g/bhp-hr for 
    these engines. EPA will contact Engelhard with regard to a revision to 
    the certification level for this engine relative to its certification 
    as well. EPA has reviewed the certification levels in accordance with 
    DDC's request and believes that Table A represents at least a 25% 
    reduction in all instances. Further, based on the test data provided by 
    Johnson Matthey, EPA believes that the test data will in fact reduce 
    the PM emissions by 25% or more on these engines.
        With regard to DDC's comments on representivity of test data, 
    Johnson Matthey's notification provides baseline testing data with a 
    particulate level of 0.44 g/bhp-hr even though the test engine had 
    accumulated 300,000 miles in service. In contrast, the table in 
    Sec. 85.1403 (c) (1)(iii)(A) of the regulations provides a baseline 
    value of 0.50 g/bhp-hr. In the case of DDC's own notification of intent 
    to certify the baseline certification testing yielded a value of 0.53 
    g/bhp-hr for this engine model. DDC questioned whether the blower that 
    was installed on this engine based on an in-field update was 100% 
    bypass blower. DDC noted that the injection timing was set at 1.460 for 
    the testing and not at 1.475 as would have been the case if the engine 
    were properly updated. Engelhard also questioned whether the injectors 
    were rebuilt and the injector height. According to DDC, the Johnson 
    Matthey pre-rebuild test configuration was not consistent with any DDC 
    certified configuration. According to DDC, because of this discrepancy, 
    the catalyst efficiency assessments would be expected to be higher, 
    than if testing had been performed using a properly rebuilt 1986 or 
    1987 engine. It was not clear whether the post-rebuild was intended to 
    reflect a standard rebuild or a rebuild using the certified DDC upgrade 
    kit. DDC and Engelhard noted that the parts listing in the application 
    did not include a blower, turbocharger cylinder heads or fuel 
    injectors, all of which were noted to be key components which are 
    subject to wear and must be replaced at rebuild. DDC also noted that 
    the cylinder kits were listed as part number 23503938. This part number 
    was noted by DDC to apply to a truck engine and are not the proper kits 
    for upgrading the engine to either a standard or upgraded bus engine 
    configuration. DDC noted that the 1.475 injection timing used in the 
    post-rebuild testing would have been proper for a standard rebuild, but 
    a timing change of 1.500 must be used with a DDC certified upgrade 
    rebuild. Johnson Matthey's post rebuild test level of 0.13 g/bhp-hr is 
    well below DDC's expectations and range of test experience for properly 
    rebuilt engines. DDC and Engelhard questioned the representivity of 
    such low test data.
        According to Johnson Matthey, and as noted in testing documentation 
    in the application, pre-rebuild engine emissions were sampled on the 
    engine just as it came from the field. No changes were made to 
    components, settings or parts prior to testing. The engine history 
    indicates that the test engines went into revenue service on April 10, 
    1986. In May 1989, with 158,880 miles on the odometer, the engine was 
    serviced at an authorized DDC facility under a warranty claim. Warranty 
    repairs were made due to high oil consumption and smoke emissions. 
    Warranty repairs consisted of the replacement of the cylinder kit with 
    standard DDC parts. DDC authorized the replacement of the 83% blower 
    with a 100% blower. It is noted that this is the by-pass blower. Aside 
    from routine maintenance, the engine operated in regular service until 
    it was determined through maintenance records that the engine, due to 
    excess oil consumption was in need of a major engine overhaul. The 
    engine was removed from service
    
    [[Page 16777]]
    
    and sent to the Southwest Research Institute for certification testing. 
    It was determined through baseline testing that the engine was 
    consuming oil at a rate of 5 quarts per 12 hours. Testing was performed 
    at Southwest Research on the engine in its as received condition. The 
    engine was tested with T-70 injectors set a timing of 1.460. DDC 
    indicated that the injection timing should have been 1.475 if the 
    engine were properly updated. Based on the information presented, EPA 
    concludes that the pre-rebuild engine was tested in the configuration 
    that would represent the original configuration along with recommended 
    modifications for the engine in the field including the timing. Johnson 
    Matthey has provided EPA with detailed documentation that the engine 
    was tested in the original in-use configuration. Therefore, it is 
    apparent that the 1.460 timing would have been acceptable for the 
    original configuration, it would not have been acceptable for the 
    engine which had been updated in the field according to DDC. However, 
    this engine had not undergone the complete update and had been only 
    partially updated based on the warranty work performed in 1989. 
    Therefore, it is apparent that the 1.460 timing would be correct for 
    this engine since it had not undergone the update. Unfortunately, the 
    confusion was evidently caused by the fact that the blower was replaced 
    under warranty. But the additional changes necessary to update the 
    engine were not made at that time. Therefore, the engine was tested 
    with the original injection timing setting rather than the setting that 
    is specified for the updated rebuild.
         In regard to the rebuilt engine presented for the post rebuild 
    testing, Johnson Matthey rebuilt the engine to the 277 horsepower 
    configuration as discussed earlier. The injectors for this horsepower 
    were the G-75 injectors set at the 1.475 timing. The documentation 
    submitted by Johnson Matthey indicates that this is the proper setting 
    according to printed field guidance and DDC commented that this would 
    be the correct timing for the standard rebuild. It is apparent to EPA 
    that the direction given in the field by DDC for a standard rebuild 
    updates the engine to the configuration which Johnson Matthey presented 
    for post rebuild testing. In regard to the parts list missing the 
    components noted, these parts were inadvertently left off the parts 
    list contained in the notification. Johnson Matthey has provided this 
    listing and it contains all the parts mentioned by the commenters as 
    being necessary for the rebuild and has been added to the docket. In 
    regard to the cylinder kits used in the rebuild, this part number was 
    provided in a printout of information from DDC's computerized service 
    information system identifying the listed cylinder kit part number to 
    be correct for this engine. In regard to this being a truck part 
    number, the servicer who performed the rebuild explained that there was 
    no bus engine designation at the time this engine was originally 
    manufactured, therefore the truck part number is referenced in the 
    guidance provided in the DDC printout. This printout is included in the 
    docket. Although the low level of PM that was generated in the post-
    rebuild testing is lower than that seen for other rebuilt engines 
    tested under this regulation, the information presented by Johnson 
    Matthey indicates it was rebuilt to what would be a standard rebuild 
    configuration. Therefore, EPA believes it is acceptable for the purpose 
    of certification in the demonstration of a 25% reduction demonstration. 
    EPA notes that a low PM number for the pre-retrofit test does not seem 
    to be an advantage to the certifier when certifying a 25% reduction.
         DDC noted that the maximum exhaust pressure limit for the 1986 6V-
    92TA engine family limit was exceeded when the CEM was installed. The 
    backpressure was 3.4 inches Hg. on the pre-rebuild engine and 3.7 
    inches Hg. on the post rebuild engine. The maximum backpressure limit 
    for the 253 horsepower configuration is 2.5 inches Hg. and in the 277 
    horsepower configuration the maximum backpressure is 3.0 inches Hg. DDC 
    noted that an in-use catalyst which becomes partially plugged could 
    become more restrictive due to ash accumulations and cause still higher 
    levels of backpressure. DDC commented that the use of the same size and 
    configuration catalyst on 8V-92TA engines which have higher exhaust 
    flows would result in extremely high back pressures. DDC noted that 
    increased backpressure will cause increased engine out smoke and 
    increased non-volatile particulate levels. It would also cause 
    increased cylinder and exhaust temperatures and have a deleterious 
    effect on engine durability. DDC also commented that the life-cycle 
    cost should be modified to reflect an increased cost based on the fuel 
    economy shown in the post rebuild certification testing. The post 
    rebuild test with the CEM in place presented an exhaust backpressure of 
    3.7 inches Hg. (an increase of 1.3 inches Hg. over the baseline test 
    without the CEM) and brake-specific fuel consumption increased from 
    0.441 to 0.454 lb/bhp-hr when the CEM was added (an increase of 2.9%). 
    DDC stated its belief that the loss in fuel economy resulted from the 
    increased backpressure. Using the equation in 40 CFR section 85.1403 
    (b)(1)(ii)(C) DDC estimated the increased cost based on loss of fuel 
    economy to be $459 (1995 dollars). DDC believes that this component 
    must be included in the life-cycle cost analysis.
         In response to the backpressure issue, Johnson Matthey noted that 
    the CEM that was used during certification testing was a prototype 
    which developed greater backpressure than the production models to be 
    manufactured. Johnson Matthey referenced SAE paper NO 930129 
    ``Production Experience of a Ceramic Wall Flow Electric Regeneration 
    Diesel Particulate Trap'' which reports measured in-use back pressure 
    of 5.2 inches Hg. on a particulate trap system of the design approved 
    by DDC and certified by EPA for the DDC 6V92TA engine and noted that 
    the level experienced during Johnson Matthey's certification testing 
    was well below this level.
         Johnson Matthey has also provided field data indicating that the 
    recent data collected shows backpressure experienced with CEMs in the 
    field is lower than that seen during the certification tests. It noted 
    that the certification test is designed to represent the standard 
    muffler in place on the exhaust system and the associated backpressure. 
    The CEM is designed to take the place of the muffler in the exhaust 
    system. Johnson Matthey has provided information indicating it will 
    design each CEM so that the backpressure due to the CEM will be less 
    than or equal to the muffler it replaces. Consequently, there will be 
    no incremental increase in backpressure due to the replacement of the 
    muffler with the CEM. Johnson Matthey provided field data from an 
    operator in which the backpressure readings were taken for buses during 
    ``full stall''. Full stall is a procedure used in the field to evaluate 
    system backpressure. The information provided indicates that with 
    standard mufflers in place the backpressure ranged between 2.7 and 3.0 
    inches of Hg. For comparison purposes, Johnson Matthey also provided 
    data that the back pressure on an in-use bus was 2.4 inches Hg. at full 
    stall with a production CEM installed. Further, Johnson Matthey has 
    indicated that it will size each catalyst for the flow requirements of 
    the engine to minimize backpressure. Johnson Matthey has arranged for 
    production CEMs to be designed and fabricated by a major manufacturer 
    of urban bus mufflers. The
    
    [[Page 16778]]
    
    production CEMs currently in use in field tests were designed with this 
    company. Johnson Matthey has indicated that it will size the catalyst 
    element to accommodate engine flow. However, the conversion of PM will 
    never be compromised as the gas space hourly velocity (GHSV) will be 
    maintained. As noted by Johnson Matthey, the GHSV determines the 
    effectiveness and performance of the catalyst to convert PM. To 
    accommodate engines with greater exhaust flow, the catalyst volume will 
    be changed in accordance with the exhaust flow rate. Therefore, if the 
    engine flow rate is increased, a larger catalyst can be applied so long 
    as the GHSV is maintained. The resultant ability of the catalyst to 
    convert PM will be maintained.
         Johnson Matthey also provided temperature data which documented 
    the exhaust temperatures with and without the catalyst. The peak 
    temperature difference between the two was between 10 to 15 degrees C 
    in the worst case. Johnson Matthey also noted that over the past six 
    years more than 1,000 buses in Europe have been equipped with CEMs and 
    there have not been any warranty claims resulting from CEM 
    backpressure. Based on the backpressure levels and the operating 
    temperatures noted during the test, EPA does not believe the 
    backpressure or temperatures experienced during testing will be 
    detrimental to engines if experienced in the field.
         Based on the fact that Johnson Matthey has shown it will provide 
    catalysts to operators which are designed in tandem with a major 
    muffler producer to have equal or less backpressure than the mufflers 
    they will replace, while at the same time maintaining catalyst 
    efficiency, and in conjunction with the field data presented, EPA does 
    not find it would be appropriate at this time to consider a life-cycle 
    cost impact due to a fuel economy decrease which would be attributable 
    to increased backpressure. Therefore, life-cycle costs will not be 
    modified.
         Since the requirements for trigger technology have already been 
    triggered for all engine models covered by this application, the life-
    cycle cost calculation is not necessary from the standpoint of 
    triggering requirements. No new requirements will be placed on 
    operators based on this certification and no operator will be required 
    to specifically purchase this equipment. Rather, operators will be able 
    to select the equipment they will use. The Johnson Matthey equipment 
    may be used by operators choosing program 1 or program 2. However, this 
    certification will not be considered trigger technology, and will not 
    affect the emission levels for program 2. EPA encourages operators to 
    supply fuel economy or emissions data relative to this certification 
    directly to EPA, if fuel economy decreases or emission increases are 
    noted in the field. If in the future, EPA finds that based on the data 
    presented that the fuel economy or emissions have been affected, a 
    notice will be issued in the Federal Register.
         DDC commented that EPA should seek assurances that the certified 
    hardware will be available for all engine bus combinations. Johnson 
    Matthey has indicated it will work with the operators to meet their 
    needs and is developing CEMs to be direct bolt in designs. This coupled 
    with the fact that other companies have already certified equipment for 
    the engines covered under this application should handle this concern.
         DDC also commented that the CEM must be placed within six feet of 
    the turbine outlet as the testing data was developed with the catalyst 
    placed six feet from the turbine. DDC noted that the temperature and 
    conversion efficiency would be affected by the catalyst placement. If 
    the catalyst is placed nine feet from the turbine outlet, rather than 
    at six feet as positioned during the emissions test, the difference in 
    exhaust temperature between the two placements may affect the catalyst 
    efficiency. In the application, Johnson Matthey provided temperature 
    data indicating that the temperature change between the turbine outlet 
    and the catalyst was 10 degrees C over the six foot length and 
    projected that the difference in the additional three foot length would 
    amount to 5 degrees C. It is not thought that this temperature 
    difference will affect catalyst effectiveness.
        Engelhard has raised a health effects issue concerning the 
    formulation of the catalyst. Specifically, Engelhard stated it's belief 
    that the Johnson Matthey CEM contains a catalyst that contains platinum 
    and vanadium. Engelhard noted that vanadium was toxic and was a real 
    concern in Europe. Engelhard stated that the combination of vanadium 
    and platinum raises the concern over increased aldehyde and oxygenate 
    emissions which would be expected to increase exhaust odor. Engelhard 
    stated that if the platinum and vanadium materials are being used, 
    Johnson Matthey should be required to supply test data proving no risk 
    to public health, welfare or safety. Engelhard did not provide any 
    documentation or references with its comments on this issue.
        In order to gain a better understanding of the Engelhard comment, 
    EPA telephoned Engelhard to discuss its comment. EPA was told that the 
    primary concern was based on a technical report titled, ``Assessment of 
    Maleic Anhydride as a Potential Air Pollution Problem''. This report 
    dated January 1976 was generated under EPA contract number 68-02-1337. 
    Engelhard did not have a copy of the report on hand and sent EPA a 
    summary abstract which has been added to the docket. EPA obtained a 
    copy from the EPA Library. The report has been added to the docket as 
    well. The report indicates that maleic anhydride is a white crystalline 
    solid with a sharp irritating odor. It also states that the main method 
    of manufacture is the reaction between benzene vapor and air in the 
    presence of a vanadium catalyst. Benzene is listed by the American 
    Council of Governmental Industrial Hygienists as having a ``A1'' 
    designation indicating that it is a confirmed human carcinogen. Maleic 
    anhydride has not received a designation from this group as no 
    experimental data has been reported. The report notes that maleic 
    anhydride is used in the production of esters, polyester resins, dye 
    intermediates, pharmaceuticals, agricultural chemicals and fumaric 
    acid. Health effects, physical chemical properties and measurement 
    techniques are also discussed in this report. Based on the report, 
    Engelhard concerns are focused on the fact that in a catalyst 
    containing platinum and vanadium, with benzene in the exhaust stream, 
    conditions may be present under which the benzene is converted to 
    maleic anhydride.
        Johnson Matthey considers the presence or absence of vanadium in 
    the formulation of the catalyst used in the CEM to be proprietary 
    information and does not wish to disclose this information to its 
    competitors through public dissemination. To protect this proprietary 
    information, EPA will not discuss the formulation of the catalyst in 
    this notice. In any case, for the reasons given below, the presence of 
    vanadium would not affect the certification of the CEM in this 
    application.
        EPA notes that the formation of maleic anhydride as discussed in 
    the report is under a controlled environment with the specific purpose 
    of producing maleic anhydride. In the process to manufacture maleic 
    anhydride, a benzene/air mixture is oxidized to maleic anhydride over a 
    vanadium catalyst at a pressure of 2 to 5 atmospheres at a temperature 
    of 400
    
    [[Page 16779]]
    
    to 450 degrees C. While benzene is present in the diesel exhaust, the 
    pressure in the exhaust will generally be at 1 atmosphere and the 
    temperature will usually be less than 400 degrees C. The average diesel 
    exhaust temperature ranges between 250 degrees and 350 degrees C. There 
    may be occasions where the diesel exhaust reaches 400 degrees C or 
    higher but this will represent peak temperatures of short duration for 
    the most part. For example, in the test engine for the post rebuild 
    test with catalyst installed, the exhaust temperature averaged 
    approximately 240 degrees C and the peak temperature was less than 330 
    degrees C. Additionally, the required pressure of 2 to 5 atmospheres 
    necessary for the specified conversion process will not be found in the 
    diesel exhaust. Therefore, the conditions specified to carry out the 
    conversion process as per the noted report will not be found in the 
    diesel exhaust system. Additionally, in the case of an oxidation 
    catalyst such as the CEM, volatile organic compounds such as maleic 
    anhydride are oxidized. Therefore, for the most part, any maleic 
    anhydride present would be converted to carbon dioxide and water by the 
    CEM. Johnson Matthey has provided test data that aldehydes and 
    oxygenate compounds were reduced by the catalyst used in the CEM.
        After review of this matter, EPA does not believe that it has 
    sufficient information or test data at this time indicating that use of 
    the candidate equipment poses an unreasonable risk to public health and 
    welfare or safety.
        However, EPA is interested in gathering additional information in 
    this area and requests that the public and industry provide information 
    with regard to the content of the diesel exhaust stream and the effect 
    oxidation catalysts may have upon exhaust stream components, especially 
    non-regulated components. Further, as benzene is present in the diesel 
    exhaust stream of all diesel engines, the possibility may exist for the 
    production of maleic anhydride with or without the presence of 
    vanadium. Therefore, the question raised here may pertain to all diesel 
    engines whether or not they are employing oxidation catalysts. Based on 
    this, EPA seeks information from the public and industry with regard to 
    diesel exhaust relative to increases or decreases in exhaust components 
    based on the use of oxidation catalysts which contain or do not contain 
    vanadium.
    
    III. Certification Approval
    
        The Agency has reviewed this notification, along with comments 
    received from interested parties, and finds that the equipment 
    described in this notification of intent to certify:
        (1) Reduces particulate matter exhaust emissions by at least 25 
    percent, without causing the applicable engine families to exceed other 
    exhaust emissions standards;
        (2) Will not cause an unreasonable risk to the public health, 
    welfare, or safety;
        (3) Will not result in any additional range of parameter 
    adjustability; and,
        (4) Meets other requirements necessary for certification under the 
    Retrofit/Rebuild Requirements for 1993 and Earlier Model Year Urban 
    Buses (40 CFR Sections 85.1401 through 85.1415).The Agency hereby 
    certifies this equipment for use in the urban bus retrofit/rebuild 
    program as discussed below in section IV.
    
    IV. Operator Requirements and Responsibilities
    
        This equipment may be used immediately by urban bus operators who 
    have chosen to comply with either program 1 or program 2, but must be 
    properly applied. Currently, operators having certain engines who have 
    chosen to comply with program 1 must use equipment certified to reduce 
    PM emissions by 25 percent or more when those engines are rebuilt or 
    replaced. Today's Federal Register notice certifies the above-described 
    Johnson Matthey equipment as meeting that PM reduction requirement. 
    Only equipment that has been certified to reduce PM by 25% or more may 
    be used by operators with applicable engines who have chosen program 1. 
    Urban bus operators who choose to comply with Program 1 may use the 
    certified Johnson Matthey equipment (or other certified equipment) 
    until such time as the 0.10 g/bhp-hr standard is triggered for the 
    applicable engines.
        Operators who choose to comply with Program 2 and use the Johnson 
    Matthey equipment will use the appropriate PM emission level from Table 
    A when calculating their fleet level attained (FLA).
        As stated in the program regulations (40 CFR 85.1401 through 
    85.1415), operators should maintain records for each engine in their 
    fleet to demonstrate that they are in compliance with the requirements 
    beginning on January 1, 1995. These records include purchase records, 
    receipts, and part numbers for the parts and components used in the 
    rebuilding of urban bus engines.
    
        Dated: April 3, 1996.
    
    Mary D. Nichols,
    
    Assistant Administrator.
    
    [FR Doc. 96-9467 Filed 4-16-96; 8:45 am]
    
    BILLING CODE 6560-50-P
    
    

Document Information

Published:
04/17/1996
Department:
Environmental Protection Agency
Entry Type:
Notice
Action:
Notice of Agency Certification of Equipment for the Urban Bus Retrofit/Rebuild Program.
Document Number:
96-9467
Dates:
The date of this notice April 17, 1996 is the effective date of certification for the equipment described in the Johnson Matthey notification. This certified equipment may be used immediately by urban bus operators. Operators who have chosen to comply with program 1 or program 2 can utilize this equipment or other equipment that is certified for any engine that is listed in Table A that undergoes rebuild.
Pages:
16773-16779 (7 pages)
Docket Numbers:
FRL-5458-4
PDF File:
96-9467.pdf