98-14160. Monsanto Company; Pesticide Tolerance Petitions Filing  

  • [Federal Register Volume 63, Number 103 (Friday, May 29, 1998)]
    [Notices]
    [Pages 29401-29409]
    From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
    [FR Doc No: 98-14160]
    
    
    -----------------------------------------------------------------------
    
    ENVIRONMENTAL PROTECTION AGENCY
    
    [PF-806; FRL-5791-2]
    
    
    Monsanto Company; Pesticide Tolerance Petitions Filing
    
    AGENCY: Environmental Protection Agency (EPA).
    
    ACTION: Notice.
    
    -----------------------------------------------------------------------
    
    SUMMARY: This notice announces the initial filing of a pesticide 
    petition proposing the establishment of regulations for residues of a 
    certain pesticide chemical in or on various food commodities.
    
    DATES: Comments, identified by the docket control number PF-806, must 
    be received on or before June 29, 1998.
    
    ADDRESSES: By mail submit written comments to: Information and Records 
    Integrity Branch, Public Information and Services Divison (7502C), 
    Office of Pesticides Programs, Environmental Protection Agency, 401 M 
    St., SW., Washington, DC 20460. In person bring comments to: Rm. 119, 
    CM #2, 1921 Jefferson Davis Highway, Arlington, VA.
        Comments and data may also be submitted electronically by following 
    the instructions under ``SUPPLEMENTARY INFORMATION.'' No confidential 
    business information should be submitted through e-mail.
        Information submitted as a comment concerning this document may be 
    claimed confidential by marking any part or all of that information as 
    ``Confidential Business Information'' (CBI). CBI should not be 
    submitted through e-mail. Information marked as CBI will not be 
    disclosed except in accordance with procedures set forth in 40 CFR part 
    2. A copy of the comment that does not contain CBI must be submitted 
    for inclusion in the public record. Information not marked confidential 
    may be disclosed publicly by EPA without prior notice. All written 
    comments will be available for public inspection in Rm. 1132 at the 
    address given above, from 8:30 a.m. to 4 p.m., Monday through Friday, 
    excluding legal holidays.
    
    FOR FURTHER INFORMATION CONTACT: James A. Tompkins, Registration 
    Support Branch, Registration Division (7505C), Office of Pesticide 
    Programs, Environmental Protection Agency, 401 M St., SW, Washington, 
    DC 20460. Office location, telephone number, and e-mail address: Rm. 
    239, Crystal Mall #2, 1921 Jefferson Davis Highway, Arlington, VA 
    22202, (703) 305-5697; e-mail: tompkins.james@epamail.epa.gov.
    SUPPLEMENTARY INFORMATION: EPA has received a pesticide petition as 
    follows proposing the establishment and/or amendment of regulations for 
    residues of certain pesticide chemical in or on various food 
    commodities under section 408 of the Federal Food, Drug, and Comestic 
    Act (FFDCA), 21 U.S.C. 346a. EPA has determined that this petition 
    contains data or information regarding the elements set forth in 
    section 408(d)(2); however, EPA has not fully evaluated the sufficiency 
    of the submitted data at this time or whether the data supports 
    granting of the petition. Additional data may be needed before EPA 
    rules on the petition.
        The official record for this notice of filing, as well as the 
    public version, has been established for this notice of filing under 
    docket control number [PF-806] (including comments and data submitted 
    electronically as described below). A public version of this record, 
    including printed, paper versions of electronic comments, which does 
    not include any information claimed as CBI, is available for inspection 
    from 8:30 a.m. to 4 p.m., Monday through Friday, excluding legal 
    holidays. The official record is located at the address in 
    ``ADDRESSES'' at the beginning of this document.
        Electronic comments can be sent directly to EPA at:
        opp-docket@epamail.epa.gov
    
    
        Electronic comments must be submitted as an ASCII file avoiding the 
    use of special characters and any form of encryption. Comment and data 
    will also be accepted on disks in Wordperfect 5.1 file format or ASCII 
    file format. All comments and data in electronic form must be 
    identified by the docket number (insert docket number) and appropriate 
    petition number. Electronic comments on this proposed rule may be filed 
    online at many Federal Depository Libraries.
    
    List of Subjects
    
        Environmental protection, Agricultural commodities, Food additives, 
    Feed additives, Pesticides and pests, Reporting and recordkeeping 
    requirements.
    
        Dated: May 14, 1998.
    
    James Jones,
    
    Director, Registration Division, Office of Pesticide Programs.
    
    Summaries of Petitions
    
        Petitioner summaries of the pesticide petitions are printed below 
    as required by section 408(d)(3) of the FFDCA. The summaries of the 
    petitions were prepared by the petitioners and represent the views of 
    the petitioners. EPA is publishing the petition summaries verbatim 
    without editing them in any way. The petition summary announces the 
    availability of a description of the analytical methods available to 
    EPA for the detection and measurement of the pesticide chemical 
    residues or an explanation of why no such method is needed.
    
    1. Monsanto Company
    
    PP 8F4937
    
        EPA has received a pesticide petition (PP 8F4937) from Monsanto 
    Company, 700 14th St., NW., Suite 1100, Washington, DC 20005. proposing 
    pursuant to section 408(d) of the Federal Food, Drug and Cosmetic Act, 
    21 U.S.C. 346a(d), to amend 40 CFR part 180 by establishing a tolerance 
    for residues of
    
    [[Page 29402]]
    
    halosulfuron-methyl: methyl 5-[(4,6-dimethoxy-2-pyrimidinyl)amino] 
    carbonyl aminosulfonyl-3-chloro-1-methyl-1H-pyrazole-4-carboxylate in 
    or on the raw agricultural commodity undelinted cotton seed & cotton 
    gin by-products at 0.05 parts per million (ppm), rice grain at 0.05 
    ppm, rice straw at 0.20 ppm, tree nut group (Group 14) nutmeat at 0.05 
    ppm and hulls at 0.20 ppm, pistachio, nutmeat at 0.05 ppm, pistachio, 
    hulls at 0.2 ppm.
        In addition, Monsanto proposes the establishment of tolerances for 
    halosulfuron methyl (as parent only) in or on the following raw 
    agricultural commodities:
        Corn, field: grain at 0.05 ppm, forage at 0.2 ppm, and fodder at 
    0.8 ppm.
        Grain, sorghum (milo): grain at 0.05 ppm, forage at 0.05 ppm, and 
    fodder/stover at 0.10 ppm.
        Monsanto also proposes removing 40 CFR 180.479 (b) which reads as 
    follows:
        Indirect or inadvertent tolerances. Tolerances are established for 
    indirect or inadvertent residues of the herbicide halosulfuron-methyl 
    and its metabolites determined as 3-chloro-1-methyl-5-
    sulfamoylpyrazole-4-carboxylic acid and expressed as parent 
    equivalents, in or on the following raw agricultural commodities when 
    present therein as a result of the application of halosulfuron-methyl 
    to growing crops.
        Soybean, forage at 0.5 ppm, soybean, hay at 0.5 ppm, soybean, seed 
    at 0.5 ppm, wheat, forage at 0.1 ppm, wheat, grain at 0.1 ppm. and 
    wheat, straw at 0.2 ppm.
        EPA has determined that the petition contains data or information 
    regarding the elements set forth in section 408(d)(2) of the FFDCA; 
    however, EPA has not fully evaluated the sufficiency of the submitted 
    data at this time or whether the data supports granting of the 
    petition. Additional data may be needed before EPA rules on the 
    petition.
    
    A. Residue Chemistry
    
        1. Plant metabolism. The metabolism of halosulfuron-methyl as well 
    as the nature of the residues in plants is adequately understood for 
    purposes of these tolerances. Metabolism studies were conducted in 
    three crops, viz.; field corn, sugarcane and soybeans. Metabolism 
    depends on the mode of application. Preemergent applications result in 
    rapid soil degradation of halosulfuron-methyl followed by crop uptake 
    of the resulting pyrazole moiety. The pyrimidine ring binds tightly to 
    soil and is eventually converted to carbon dioxide by microbial 
    degradation. In postemergent applications, little metabolism and 
    translocation take place resulting in unmetabolized parent compound as 
    the major residue on the directly treated foliar surfaces. Very low 
    residue levels of the metabolite 3-chloro-1-methyl-5-sulfamoylpyrazole-
    4-carboxylic acid (3-CSA) are found in the grain.
        2. Analytical method. A practical analytical method, gas 
    chromatography with an electron- capture detector which detects and 
    measures total residues (halosulfuron-methyl and metabolites) is 
    available for enforcement purposes with a limit of detection that 
    allows monitoring of food with residues at or above the levels set in 
    these tolerances. This enforcement method has been submitted to the 
    Food and Drug Administration for publication in the Pesticide 
    Analytical Manual, Vol. II (PAM II). It has undergone independent 
    laboratory validation and validation at the Beltsville laboratory. The 
    Analytical Chemistry section of the EPA concluded that the method is 
    adequate for enforcement. Analytical method is also available for 
    analyzing meat by-products which also underwent successful independent 
    laboratory and Beltsville laboratory validations.
        3. Magnitude of residues. In the tree nut residue study, there were 
    no quantifiable residues found in nut meats using an analytical method 
    with limit of quantitation (LOQ) of 0.05 ppm. Residues ranging from 
    <0.05 to="" 0.154="" ppm="" were="" found="" in="" almond="" hulls="" when="" treated="" at="" 1.4="" times="" the="" recommended="" rate.="" there="" were="" no="" detectable="" residues="" found="" in="" cotton="" undelinted="" seed="" as="" well="" as="" from="" the="" resulting="" processed="" commodities="" even="" at="" treatment="" rates="" of="" more="" than="" 5="" times="" the="" maximum="" recommended="" rate="" per="" season.="" no="" quantifiable="" residues="" were="" found="" in="" cotton="" gin="" byproducts.="" the="" residues="" in="" the="" rice="" grain="" and="" rice="" processed="" fractions="" were="" below="" the="" limit="" of="" detection="" of="" 0.02="" ppm="" at="" all="" locations.="" 5="" of="" the="" 18="" sites="" showed="" residues="" in="" rice="" straw="" ranging="" from="" 0.06="" to="" 0.17="" ppm="" while="" 13="" sites="" had="" non-quantifiable="" residues=""><0.05 ppm).="" results="" of="" the="" aquatic="" sediment="" dissipation="" study="" showed="" that="" the="" parent="" and="" major="" metabolite="" residues="" dissipated="" rapidly="" in="" both="" soil="" and="" water="" phases="" with="">50 values of 1.3 and 1.87 days and 
    DT90 of 6.48 and 12 days from 2 sites, respectively. The 
    half-life of halosulfuron-methyl in the paddy water phase is calculated 
    to be 0.87 days following direct application to water. The vertical 
    mobility is not a major route of dissipation. The residues (parent and 
    metabolites that are hydrolyzable to 3-CSA) dissipated rapidly in the 
    upper soil layer but showed no indication of significant downward 
    movement into the lower soil layers.
    
    B. Toxicological Profile
    
        1. Acute toxicity. Acute toxicological studies placing the 
    technical-grade halosulfuron-methyl in Toxicity Category III. A 90-day 
    feeding study in rats resulted in a lowest-observed-effect-level (LOEL) 
    of 497 milligrams/kilograms/day (mg/kg/day) in males and 640 mg/kg/day 
    in females, and a no-observed-effect-level (NOEL) of 116 mg/kg/day in 
    males and 147 mg/kg/day in females.
        2. Genotoxicty. Bacterial/mammalian microsomal mutagenicity assays 
    were performed and found not to be mutagenic. Two mutagenicity studies 
    were performed to test gene mutation and found to produce no 
    chromosomal aberrations or gene mutations in cultured Chinese hamster 
    ovary cells. An in vivo mouse micronucleus assay did not cause a 
    significant increase in the frequency of micronucleated polychromatic 
    erythrocytes in bone marrow cells. A mutagenicity study was performed 
    on rats and found not to induce unscheduled DNA synthesis in primary 
    rat hepatocytes.
        3. Reproductive and developmental toxicity. A developmental 
    toxicity study in rats resulted in a developmental LOEL of 750 mg/kg/
    day, based on decreases in mean litter size and fetal body weight, and 
    increases in resorptions, resorptions/dam, post-implantation loss and 
    in fetal and litter incidences of soft tissue and skeletal variations, 
    and a developmental NOEL of 250 mg/kg/day. Maternal LOEL was 750 mg/kg/
    day based on increased incidence of clinical observations, reduced body 
    weight gains, and reduced food consumption and food efficiency. The 
    maternal NOEL was 250 mg/kg/day.
        A developmental toxicity study in rabbits resulted in a 
    developmental LOEL of 150 mg/kg/day, based on decreased mean litter 
    size and increases in resorptions, resorptions/dam and post-
    implantation loss, and a developmental NOEL of 50 mg/kg/day. The 
    maternal LOEL was 150 mg/kg/day based on reduced body weight gain and 
    reduced food consumption and food efficiency. The maternal NOEL was 50 
    mg/kg/day.
        A dietary 2-generation reproduction study in rats resulted in 
    parental toxicity at 223.2 mg/kg/day in males and 261.4 mg/kg/day in 
    females in the form of decreased body weights, decreased body weight 
    gains, and reduced food consumption during the premating period. Very 
    slight effects were noted in body weight of the offspring at this dose. 
    This effect was
    
    [[Page 29403]]
    
    considered to be developmental toxicity (developmental delay) rather 
    than a reproductive effect. No effects were noted on reproductive or 
    other developmental toxicity parameters. The systemic/ developmental 
    toxicity LOEL was 223.2 mg/kg/day in males and 261.4 mg/kg/day in 
    females; the systemic/developmental toxicity NOEL was 50.4 mg/kg/day in 
    males and 58.7 mg/kg/day in females. The reproductive LOEL was greater 
    than 223.2 mg/kg/day in males and 261.4 mg/kg/day in females; the 
    reproductive NOEL was equal to or greater than 223.2 mg/kg/day in males 
    and 261.4 mg/kg/day in females.
        4. Subchronic toxicity. A 21-day dermal toxicity study in rats 
    resulted in a NOEL of 100 mg/kg/day in males and greater than 1,000 mg/
    kg/day in females. The only treatment-related effect was a decrease in 
    body weight gain of the 1,000 mg/kg/day group in males.
        5. Chronic toxicity. A 1-year chronic oral study in dogs resulted 
    in a LOEL of 40 mg/kg/day based on decreased weight gain and a NOEL of 
    10 mg/kg/day for systemic toxicity. A 78-week carcinogenicity study was 
    performed on mice. Males in the 971.6 mg/kg/day group had decreased 
    body weight gains and an increased incidence of microconcretion/
    mineralization in the testis and epididymis. No treatment-related 
    effects were noted in females. Based on these results, a LOEL of 971.9 
    mg/kg/day was established in males and NOELs of 410 mg/kg/day in males 
    and 1,214.6 mg/kg/day in females were established. The study showed no 
    evidence of carcinogenicity. A combined chronic toxicity/
    carcinogenicity study in rats resulted in a LOEL of 225.2 mg/kg/day in 
    males and 138.6 mg/kg/day in females based on decreased body weight 
    gains, and a NOEL of 108.3 mg/kg/day in males and 56.3 mg/kg/day in 
    females. The study showed no evidence of carcinogenicity.
        6. Animal metabolism. EPA stated that the nature of the residue in 
    ruminants was determined to be adequately understood. In the tissues 
    and milk of goats, the major extractable residue was the unmetabolized 
    parent compound. Based on the low residues of the parent compound in 
    corn grain and the low transfer of residues in the metabolism study, 
    tolerances on poultry products were not required. In the rat metabolism 
    study, parent compound was absorbed rapidly but incompletely. Excretion 
    was relatively rapid at all doses tested with majority of radioactivity 
    eliminated in the urine and feces by 72 hours. Fecal elimination of 
    parent was apparently the result of unabsorbed parent.
        7. Metabolite toxicology. The toxicology studies listed below were 
    conducted with the 3-CSA metabolite. Based on the toxicological data of 
    the 3-CSA metabolite, EPA concluded that it has lower toxicity compared 
    to the parent compound and that it should not be included in the 
    tolerance expression. The residue of concern is the parent compound 
    only.
        i. A 90-day rat feeding study resulted in a LOEL in males of 
    >20,000 ppm and a NOEL of 20,000 ppm (1,400 mg/kg/day). In females, the 
    LEL is 10,000 ppm (772.8 mg/kg/day) based on decreased body weight 
    gains and a NOEL of 1,000 ppm (75.8 mg/kg/day).
        ii. A developmental toxicity resulted in a LOEL for maternal 
    toxicity of >1,000 mg/kg/day based on the absence of systemic toxicity, 
    a NOEL of 1,000 mg/kg/day. The developmental LOEL is >1,000 mg/kg/day 
    and the NOEL is 1,000 mg/kg/day.
        iii. The microbial reverse gene mutation did not produce any 
    mutagenic effect while the mammalian cell gene mutation/chinese hamster 
    ovary cells did not show a clear evidence of mutagenic effect in the 
    Chinese hamster ovary cells.
        iv. The mouse micronucleus assay did not show any clastogenic or 
    aneugenic effect.
        8. Endocrine disruption. No specific tests have been conducted with 
    halosulfuron-methyl to determine whether the chemical may have an 
    effect in humans that is similar to an effect produced by a naturally 
    occurring estrogen or other endocrine effects. However, there were no 
    significant findings in other relevant toxicity tests, i.e., teratology 
    and multi-generation reproduction studies, which would suggest that 
    halosulfuron-methyl produces effects characteristic of the disruption 
    of the estrogenic hormone.
    
    C. Aggregate Exposure
    
        1. Dietary exposure-- i. Food. For purposes of assessing the 
    potential dietary exposure from food under existing tolerances, 
    aggregate exposure based on the Theoretical Maximum Residue 
    Contribution (TMRC) which is an estimate of the level of residues 
    consumed daily if each food item contained pesticide residues equal to 
    the tolerance. The calculated TMRC value was 0.0005 mg/kg body weight/
    day for the general US population which will utilize only 0.51% of the 
    Reference Dose (RfD) for established tolerances for halosulfuron-methyl 
    and its metabolites in/on raw agricultural commodities of field corn, 
    grain sorghum (milo) and secondary tolerances in meat and meat 
    byproducts (cattle, goats, hogs, horses, and sheep). TMRC is obtained 
    by multiplying the tolerance levels for each commodity by the average 
    daily consumption of the food forms of that commodity eaten by the U.S. 
    population and various population subgroups. In conducting this 
    exposure assessment, conservative assumptions were made, e.g., 100% of 
    all commodities will contain halosulfuron-methyl residues and those 
    residues would be at the level of their respective tolerances. This 
    results in a large overestimate of human exposure. Monsanto conducted 
    another dietary exposure analysis to include food from crops in 
    subsequent petitions including this petition. This analysis added 
    dietary exposure from the following raw agricultural commodities using 
    the proposed tolerance levels of each commodity, viz.; sweet corn 
    (kernel + cobs with husks removed at 0.05 ppm, forage at 0.2 ppm, 
    fodder/stover at 0.8 ppm), pop corn (grain at 0.05 ppm, fodder/stover 
    at 0.8 ppm), sugarcane (cane at 0.05 ppm), tree nut crop grouping (nut 
    meat at 0.05 ppm, hulls at 0.2 ppm), pistachio nuts (nutmeat at 0.05 
    ppm, hulls at 0.2 ppm), cotton (undelinted seed at 0.05 ppm, gin 
    byproduct at 0.2 ppm) and rice (grain at 0.05 ppm and straw at 0.2 
    ppm). Food consumption data from the USDA Nationwide Food consumption 
    survey for 1989-1992 and the EXPOSURE-1 software by TAS, Inc. were used 
    in the calculation. Even with the same conservative assumptions, the 
    potential dietary exposure to halosulfuron-methyl from consumption of 
    products for which it is currently labeled and proposed resulted in a 
    TMRC of 0.00064 mg/kg body weight/day and represents only 0.6% of the 
    RfD for the general U.S. population. Field corn and sorghum forage and 
    fodder are fed to animals, thus exposure of humans to residues from 
    these commodities might result if such residues are transferred to 
    meat, milk, poultry or eggs. However, based on the results of animal 
    metabolism and the amount of halosulfuron-methyl expected in animal 
    feeds, Monsanto concludes that there is no reasonable expectation that 
    residues of halosulfuron-methyl will exceed existing tolerances in 
    meat. The regulation of animal commodities and poultry products are not 
    required.
        ii. Drinking water. There is no Maximum Contaminant Level (MCL) 
    established for residues of halosulfuron-methyl. It is not listed for 
    MCL development or drinking water monitoring under the Safe Drinking 
    Water Act nor is it a target of EPA's National Survey of Wells for 
    Pesticides.
    
    [[Page 29404]]
    
    Monsanto is not aware of any halosulfuron-methyl detections in any 
    wells, ponds, lakes or streams resulting from its use in the United 
    States. A Lifetime Health Advisory Level (HAL), calculated using EPA 
    procedures, may be used as a preliminary acceptable level in drinking 
    water. The calculated level is 700 ppb which assumes a 20% relative 
    contribution from water and which is sufficient to provide ample 
    margins of safety. In addition, EPA has concluded that potential levels 
    of halosulfuron-methyl or metabolites in soil and water do not appear 
    to have significant toxicological effects on humans or animals and 
    presents a negligible risk.
        The EPA has expressed concern regarding potential groundwater 
    contamination by the sulfonylurea (SU) class of chemistry in general 
    and has required generic label warnings for halosulfuron-methyl; 
    however, results of the field dissipation and lysimeter studies and a 
    recently completed aquatic sediment study with halosulfuron-methyl 
    should mitigate the concern for this chemical in particular.
        Based on the very low level of mammalian toxicity, lack of other 
    toxicological concerns and low use rates, Monsanto believes that there 
    is reasonable certainty that no harm will result from exposure to 
    halosulfuron-methyl via drinking water sources.
        iii. Non-dietary exposure. Halosulfuron-methyl is labeled for use 
    on commercial and residential turf and other non-crop sites which could 
    have minimal opportunity for exposure. The agricultural uses including 
    the proposed uses in tree nut crop group, pistachio nuts, cotton and 
    rice will not increase the non-occupational exposure appreciably, if at 
    all. Any exposure to halosulfuron-methyl resulting from turf use will 
    result from dermal exposure during application and will be limited 
    because of low use rates. In the 21-day dermal study, no treatment 
    related adverse effects were observed and the NOAEL was determined to 
    be greater than the highest dose tested, >1,000 mg/kg. Halosulfuron-
    methyl is non-volatile with a vapor pressure of <1 x="">-7 mm 
    Hg, hence, inhalation exposure during and after application will not 
    add significantly to aggregate exposure. Based on the physical and 
    chemical characteristics, low use rates, low acute toxicity and lack of 
    other toxicological concerns, Monsanto believes that the risk posed by 
    non-occupational exposure to halosulfuron-methyl is minimal.
    
    D. Cumulative Effects
    
        Halosulfuron-methyl belongs to the sulfonyl urea class of 
    chemistry. The mode of action of halosulfuron-methyl is the inhibition 
    of the plant enzyme aceto lactase synthetase (ALS), which is essential 
    for the production of required amino acid in plants. Although other 
    registered sulfonyl ureas may have similar herbicidal mode of action, 
    there is no information available to suggest that these compounds 
    exhibit a similar toxicity profile in the mammalian system that would 
    be cumulative with halosulfuron-methyl. Thus, consideration of a common 
    mechanism of toxicity is not appropriate at this time. Monsanto is 
    considering only the potential risks of halosulfuron-methyl in its 
    aggregate exposure assessment.
    
    E. Safety Determination
    
        1. U.S. population--Chronic dietary exposure. As stated above, the 
    EPA's calculated aggregate chronic exposure to halosulfuron-methyl from 
    the established tolerances for field corn and grain sorghum raw 
    agricultural commodities utilizes only 0.51% of the RfD using very 
    conservative assumptions. Monsanto's subsequent calculation to include 
    the proposed tolerances on sweet corn, pop corn, sugarcane, tree nut 
    crop grouping, pistachio nuts, rice and cotton estimates that it will 
    utilize only 0.6% of the RfD for the entire U.S. population. EPA 
    generally has no concern for exposures below 100% of the RfD because 
    the RfD represents the level at or below which daily aggregate dietary 
    exposure over a lifetime will not pose appreciable risks to human 
    health. Toxicology data indicating low potential for mammalian toxicity 
    and lack of other toxicity concerns plus the conservative assumptions 
    used in this calculation support the conclusion that there is a 
    ``reasonable certainty of no harm'' to the U.S. population in general 
    from aggregate exposure to halosulfuron-methyl residues from all 
    anticipated dietary exposures and all other non-occupational exposures.
        2. Acute dietary exposure. The detailed DRES acute exposure 
    analysis evaluates individual food consumption and estimates the 
    distribution of single day exposures through the diet for the US 
    population and certain subgroups. Since the toxicological effect to 
    which high end exposure is compared is developmental toxicity, EPA 
    determined that the DRES subgroup of concern is females (13+ years) 
    which approximates women of child-bearing age. The appropriate NOEL to 
    use to assess safety in acute exposure is 50 mg/kg body weight/day from 
    a developmental toxicity study in rabbits.
        For shorter term risk, the Margin of Exposure (MOE), a measure of 
    how closely the high end exposure comes to the NOEL and is calculated 
    as a ratio of the NOEL to the exposure (NOEL/exposure = MOE). For 
    toxicological endpoints established based upon animal studies ,the 
    agency is generally not concerned unless the MOE is below 100. In this 
    analysis, tolerance levels were used to calculate the exposure of the 
    highest exposed individual (females, 13+ year subgroup). High end 
    exposure for this subgroup resulted in an MOE in excess of 30,000. 
    Therefore, the acute dietary exposure to halosulfuron-methyl does not 
    represent a risk concern. Monsanto has calculated the MOE for all 
    tolerances (established and proposed) which resulted in an MOE of 
    31,623 for the entire U.S. population. Monsanto's calculation used the 
    individual food consumption data from the 1989-1992 USDA Food 
    Consumption Surveys and the EXPOSURE-4 software by TAS, Inc. Therefore, 
    Monsanto concludes that there is a reasonable certainty that no harm 
    will result from acute aggregate exposure to halosulfuron-methyl 
    residues.
        3. Infants and children. In assessing the potential for additional 
    sensitivity of infants and children to residues of halosulfuron-methyl, 
    Monsanto considered data from developmental toxicity studies in the rat 
    and rabbit and a 2-generation reproduction study in the rat. The 
    developmental toxicity studies are designed to evaluate the potential 
    for adverse effects on the developing organism resulting from exposure 
    during prenatal development to the female parent. Reproduction studies 
    provide information relating to effects from exposure to the chemical 
    on the reproductive capability of both (mating) parents and on off 
    spring from pre-natal and post-natal exposure to the pesticide as well 
    as systemic toxicity.
        In a developmental toxicity study in the rat, the NOEL for both 
    maternal and developmental toxicity was considered to be 250 mg/kg/day. 
    In a developmental toxicity study in rabbits, a NOEL for both 
    developmental and maternal toxicity was considered to be 50 mg/kg/day. 
    A dietary 2-generation reproduction study in rats resulted in parental 
    toxicity at 223.2 mg/kg/day in males and 261.4 mg/kg/day in females in 
    the form of decreased body weights, decreased body weight gains, and 
    reduced food consumption during the premating period. Very slight 
    effects were noted in body weight of the offspring at this dose. This 
    effect was
    
    [[Page 29405]]
    
    considered to be developmental toxicity (developmental delay) rather 
    than a reproductive effect. No effects were noted on reproductive or 
    other developmental toxicity parameters. The systemic/developmental 
    toxicity NOEL was 50.4 mg/kg/day in males and 58.7 mg/kg/day in 
    females. The reproductive NOEL was equal to or greater than 223.2 mg/
    kg/day in males and 261.4 mg/kg/day in females. In all cases, the 
    reproductive and developmental NOELs were greater than the NOEL on 
    which the RfD was based, thus allowing for an additional margin of 
    safety and indicating that halosulfuron-methyl does not pose any 
    increased risk to infants or children.
        4. Chronic analysis. Using the conservative dietary exposure 
    assumptions described above, the TMRC for the most exposed subgroups is 
    0.00117 mg/kg body weight/day for nonnursing infants (less than 1-year 
    old) and 0.001008 mg/kg body weight/day for children (1 to 6 years 
    old), and that this aggregate exposure to residues of halosulfuron-
    methyl utilizes only 1.170 and 1.008% of the RfD, respectively when 
    existing tolerances are considered. Monsanto's subsequent analysis 
    included contribution from the proposed tolerances in sugarcane, sweet 
    corn/popcorn, tree nut crop grouping, pistachio nuts, rice and cotton. 
    The TMRC utilized only 1.7 and 1.3% of the RfD, respectively.
        FFDCA section 408 provides that EPA may apply an additional safety 
    factor (up to 10) in the case of threshold effects for infants and 
    children to account for pre- and post-natal toxicity and the 
    completeness of the data base. Based on current toxicological data 
    requirements, the data base relative to pre- and post-natal effects in 
    children is complete. Further, the NOEL of 10 mg/kg/day from the 1-year 
    feeding study in dogs, which was used to calculate the RfD (discussed 
    above), is already lower than the NOELs from the reproductive and 
    developmental studies with halosulfuron-methyl by a factor of at least 
    25- and 5-fold, respectively. An additional safety factor is not 
    warranted and the RfD of 0.1 mg/kg/day is appropriate for assessing 
    aggregate risk to infants and children.
        Therefore, based on complete and reliable toxicity data and the 
    conservative exposure assessment, Monsanto concludes that there is 
    reasonable certainty that no harm will result to infants and children 
    from aggregate exposure to halosulfuron-methyl residues.
    
    F. International Tolerances
    
        Maximum residue levels have not been established for residues of 
    halosulfuron-methyl on corn, sorghum, sugarcane, sweet corn, pop corn, 
    tree nuts, pistachio nuts, rice or cotton or any other food or feed 
    crop by the Codex Alimentarius Commission.
    
    2. Norvartis Crop Protection Inc.
    
    PP 3F4225
    
        EPA has received a pesticide petition (PP 3F4225) from Norvartis 
    Crop Protection INC., P.O. Box 18300, Greensboro, NC 27419, proposing 
    pursuant to section 408(d) of the Federal Food, Drug and Cosmetic Act, 
    21 U.S.C. 346a(d), to amend 40 CFR part 180 extending time limited 
    tolerances for residues of Triasulfuron in or on the raw agricultural 
    commodity grass, forage at 7.0 ppm, grass, hay at 2.0 ppm and kidney of 
    cattle, goats, hogs, horses, and sheep at 0.5 ppm. EPA has determined 
    that the petition contains data or information regarding the elements 
    set forth in section 408(d)(2) of the FFDCA; however, EPA has not fully 
    evaluated the sufficiency of the submitted data at this time or whether 
    the data supports granting of the petition. Additional data may be 
    needed before EPA rules on the petition.
    
    A. Residue Chemistry
    
        1. Plant metabolism. The nature of the residue in plants is 
    understood. The metabolism of triasulfuron in wheat proceeds by 
    hydroxylation of the phenyl ring and hydrolytic cleavage of the urea 
    bridge. The residue of regulatory concern is parent triasulfuron. 
    Because the metabolism work in wheat can be translated to grasses, 
    parent compound is the residue of regulatory concern for grasses.
        2. Analytical method. Triasulfuron in grass was analyzed by 
    Analytical Method AG-500B which the validated tolerance enforcement 
    method. According to Method AG-500B, triasulfuron is extracted with a 
    mixture of methanol and phosphoric acid. The extract is diluted with 
    water. Triasulfuron residues are partitioned into dichloromethane and 
    cleaned up on a BondElut CN solid phase extraction column. Residues are 
    determined by column-switching HPLC utilizing a Lichrosorb CN column 
    followed by a Zorbax ODS column, with UV detection at 232 nm.
        3. Magnitude of residues. A total of 16 field trials have been 
    conducted in 16 States. Seven sites tested bromegrass or fescue, 5 used 
    bluegrass, and 4 used bermudagrass. A total of 69.6% of U.S. 
    pastureland was represented by these trials. Two post broadcast spray 
    applications were made 60-days apart at a rate of 12 grams active 
    ingredient/A/application. Time-limited tolerances were previously 
    established at 7 ppm in grass, forage and 2 ppm in grass, hay pending 
    the submission of additional residue trials. These additional field 
    trials which are included in the numbers above did not show residues 
    exceeding the current tolerances in either grass, forage (0-day PHI) or 
    grass, hay (30-days PHI). The feeding of either substrate to beef or 
    dairy cattle will not result in existing tolerances in animal 
    commodities being exceeded.
    
    B. Toxicological Profile
    
        1. Acute toxicity. Triasulfuron has a low order of acute toxicity. 
    The rat oral LD50 is > 5,000 milligrams/kilogram (mg/kg), 
    the acute rabbit dermal LD50 is > 2,000 mg/kg and the rat 
    inhalation LC50 is > 5.2 mg/L. Triasulfuron is slightly 
    irritating to the eye but not irritating to skin. It is not a skin 
    sensitizer in guinea pigs. The commercial formulation of triasulfuron 
    (75WP) has a similar acute toxicity profile. Both the technical 
    material and the 75WP formulation require a Category III CAUTION Signal 
    Word on the label.
        2. Genotoxicty. Assays for genotoxicity were comprised of tests 
    evaluating the potential of triasulfuron to induce point mutations 
    (Salmonella typhimurium, Saccharomyces cerevisiae and mouse lymphoma 
    L5178Y/TK/+/- cells), chromosome aberrations (micronucleus test in 
    Chinese hamsters) and the ability to induce either unscheduled DNA 
    synthesis in rat hepatocytes and human fibroblasts. The results 
    indicate that triasulfuron is not mutagenic or clastogenic and does not 
    induce unscheduled DNA synthesis.
        3. Reproductive and developmental toxicity. The developmental and 
    teratogenic potential of triasulfuron was investigated in rats and 
    rabbits. The results indicate that triasulfuron was maternally toxic in 
    the rat at doses of > 300 mg/kg/day. Developmental toxicity in the form 
    of delayed skeletal maturation was observed only at the highest dose 
    tested (HDT) of 900 mg/kg/day. The corresponding maternal and 
    developmental NOELs were established at doses of 100 and 300 mg/kg/day, 
    respectively in the rat. In the rabbit, maternal toxicity was observed 
    at the HDT of 240 mg/kg/day; no evidence of developmental toxicity was 
    present at 240 mg/kg/day. The maternal developmental NOELs were 120 and 
    240 mg/kg/day, respectively. No evidence of teratogenicity was observed 
    at the HDT in either the rat or rabbit.
    
    [[Page 29406]]
    
    There was no effect of triasulfuron on reproductive performance in a 2 
    generation rat reproduction study conducted at doses of 1, 50 and 250 
    mg/kg/day. Maternal and fetal toxicity as indicated by decreased body 
    weight gain was noted at the HDT of 250 mg/kg/day. The maternal and 
    developmental NOEL was 50 mg/kg/day.
        4. Subchronic toxicity. The subchronic toxicity of triasulfuron was 
    evaluated in the rat and dog at high doses. Triasulfuron was poorly 
    tolerated in the rat at doses of > 516 mg/kg/day as indicated by 
    increased mortality, decreased body weight gain and kidney damage due 
    to the presence of triasulfuron-containing calculi present in the 
    urogenital tract. The NOEL in the rat was 10 mg/kg/day. Triasulfuron 
    was not well tolerated by the dog at doses of 10,000 ppm (250 mg/kg/
    day) as indicated by body weight reduction, anemia, and effects on the 
    spleen, liver and kidney. The NOEL was 1,000 ppm (33 mg/kg/day).
        5. Chronic toxicity. The chronic toxicity of triasulfuron was 
    investigated in long term studies in the rat, mouse and dog. Target 
    organs included the liver, kidney and blood. NOELs were established at 
    dose levels of 32.1, 1.2, and 129 mg/kg/day, respectively. The mouse is 
    the most sensitive species with a NOEL = 1.2 mg/kg/day. The 
    carcinogenicity studies on triasulfuron showed no evidence of an 
    oncogenic response in either mouse or rat. The chemical is classified 
    in category E.
        6. Animal metabolism. The metabolism of triasulfuron has been well 
    characterized in standard FIFRA rat, goat and poultry metabolism 
    studies. Parent triasulfuron accounts for the majority of the excreted 
    dose in these species. Cleavage of the sulfonylurea bridge occurs at a 
    low rate but it is more prevalent in goats and hens than in rats. 
    Hydroxylation of the phenyl ring, which constitutes the major metabolic 
    pathway elucidated in wheat, also was found in the rat. None of the 
    metabolites identified in these studies are considered to be 
    toxicologically different than parent.
        7. Metabolite toxicology. The metabolism of triasulfuron has been 
    well characterized in rat, goat and poultry metabolism studies. None of 
    the metabolites identified in these studies are considered to be 
    toxicologically different than parent.
        8. Endocrine disruption. Triasulfuron does not belong to a class of 
    chemicals known or suspected of having adverse effects on the endocrine 
    system. There was no effect of triasulfuron on reproductive performance 
    in a 2-generation rat reproduction study conducted at doses of 1, 50 
    and 250 mg/kg/day. Although residues of triasulfuron have been found in 
    raw agricultural commodities, there is no evidence that triasulfuron 
    bioaccumulates in the environment.
    
    C. Aggregate Exposure
    
        1. Food. Novartis has estimated the aggregate exposure to 
    triasulfuron based on the established and time-limited tolerances for 
    triasulfuron (40 CFR 180.459). The theoretical maximum residue 
    contribution to diet is obtained by multiplying the tolerance level 
    residue for all these raw agricultural commodities by the consumption 
    data which estimates the amount of these products consumed by various 
    population subgroups. Because some of these raw agricultural 
    commodities (e.g. wheat and barley forage and fodder, grass forage and 
    hay) are fed to animals, the transfer of residues to animal commodities 
    has been calculated based on a conservatively constructed cattle diet. 
    In addition, Novartis has conservatively assumed that 100% of the raw 
    agricultural commodities contain residues of triasulfuron at tolerance 
    levels.
        2. Drinking water. Another potential source of exposure of the 
    general population to residues of pesticides are residues in drinking 
    water. The potential for triasulfuron to enter surface or groundwater 
    sources of drinking water is limited because of the low use rate. The 
    Maximum Contaminant Level Guideline (MCLG) calculated for triasulfuron 
    according to EPA's procedures is 84 ppb, a value that is substantially 
    greater than levels that are likely to be found in the environment 
    under proposed conditions of use.
        3. Non-dietary exposure. Novartis has evaluated the estimated non-
    occupational exposure to triasulfuron and concludes that the potential 
    for non-occupational exposure to the general population is unlikely 
    since triasulfuron is not planned to be used in or around the home, 
    including home lawns.
    
    D. Cumulative Effects
    
        Novartis also has considered the potential for cumulative effects 
    of triasulfuron and other chemicals belonging to this class that may 
    have a common mechanism of toxicity. Novartis concluded that 
    consideration of a common mechanism of toxicity is not appropriate at 
    this time since there is no data to establish whether a common 
    mechanism exists.
    
    E. Safety Determination
    
        1. U.S. population. Using the conservative exposure assumptions 
    described above, based on the completeness and reliability of the 
    toxicity data, Novartis has concluded that aggregate exposure to 
    triasulfuron will utilize a maximum of 4.63% of the RfD for the U.S. 
    population based on chronic toxicity endpoints. EPA generally has no 
    concern for exposures below 100% of the RfD because the RfD represents 
    the level at or below which daily aggregate dietary exposure over a 
    lifetime will not pose appreciable risks to human health. Therefore, 
    Novartis concludes that there is a reasonable certainty that no harm 
    will result from aggregate exposure to triasulfuron or residues of 
    triasulfuron that may appear in raw agricultural commodities.
        2. Infants and children. In assessing the potential for additional 
    sensitivity of infants and children to residues of triasulfuron, 
    Novartis has considered data from developmental toxicity studies in the 
    rat and rabbit and a 2-generation reproduction study in the rat on 
    triasulfuron. The developmental toxicity studies are designed to 
    evaluate adverse effects on the developing organism resulting from 
    chemical exposure during prenatal development to one or both parents. 
    Reproduction studies provide information relating to effects from 
    exposure to a chemical on the reproductive capability of mating animals 
    and data on systemic toxicity.
        Developmental toxicity in the form of delayed skeletal maturation 
    was observed in the rat only at the HDT of 900 mg/kg/day. The 
    corresponding maternal and developmental NOELs were established at 
    doses of 100 and 300 mg/kg/day, respectively in the rat. In the rabbit, 
    maternal toxicity was observed at the HDT of 240 mg/kg/day; no evidence 
    of developmental toxicity was present at 240 mg/kg/day.
        There was no effect of triasulfuron on reproductive performance in 
    a 2 generation rat reproduction study conducted at doses of 1, 50 and 
    250 mg/kg/day. Maternal and fetal toxicity as indicated by decreased 
    body weight gain was noted at the HDT 250 mg/kg/day. The maternal and 
    developmental NOELs were 50 mg/kg/day.
        Section 408 of the FFDCA provides that EPA may apply an additional 
    safety factor for infants and children in the case of threshold effects 
    to account for pre- and post-natal toxicity and the completeness of the 
    database. Based on the current toxicological data requirements, the 
    database relative to pre- and post-natal effects for children is 
    complete. Further, for triasulfuron,
    
    [[Page 29407]]
    
    the NOEL of 1.2 mg/kg/day from the mouse oncogenicity study, which was 
    used to calculate the RfD of 0.01 mg/kg/day, was approximately 50 times 
    lower than the developmental NOEL level from the rat multigeneration 
    reproduction study. There is no evidence to suggest that developing 
    organisms are more sensitive to the effects of triasulfuron than are 
    adults.
        Using the conservative exposure assumptions described above and the 
    chronic toxicity NOEL of 1.2 mg/kg/day (RfD of 0.01 mg/kg/day), 
    Novartis has determined that the % of the RfD that will be utilized by 
    aggregate exposure to residues of triasulfuron is 3.98% for nursing 
    infants less than 1-year old, 15.43% for non-nursing infants, 10.91% 
    for children 1 to 6-years old and 7.34% for children 7 to 12-years old. 
    Therefore, based on the completeness and reliability of the toxicity 
    data and the conservative exposure assessment, Novartis concludes that 
    there is a reasonable certainty that no harm will result to infants and 
    children from aggregate exposure to triasulfuron residues.
    
    F. International Tolerances
    
        There are no Codex Alimentarius Commission (CODEX) maximum residue 
    levels (MRL's) established for residues of triasulfuron in or on raw 
    agricultural commodities.
    
    3. Zeneca Ag Products
    
    PP 8F4954
    
        EPA has received a pesticide petition (PP 8F4954) from Zeneca Ag 
    Products, 1800 Concord Pike, Wilmington, DE 19850-5458 proposing 
    pursuant to section 408(d) of the Federal Food, Drug and Cosmetic Act, 
    21 U.S.C. 346a(d), to amend 40 CFR part 180 by establishing a tolerance 
    for residues of the herbicide, 2-[4-(methylsulfonyl)-2-nitrobenzoyl]-
    1,3-cyclohexanedione, in or on the raw agricultural commodities field 
    corn, field corn fodder and field corn forage at 0.01 ppm. EPA has 
    determined that the petition contains data or information regarding the 
    elements set forth in section 408(d)(2) of the FFDCA; however, EPA has 
    not fully evaluated the sufficiency of the submitted data at this time 
    or whether the data supports granting of the petition. Additional data 
    may be needed before EPA rules on the petition.
    
    A. Residue Chemistry
    
        1. Plant metabolism. The nature of the residue of 2-[4-
    (methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione, (hereafter 
    referred to by the trade name ZA1296) in plants is adequately 
    understood. ZA1296 is rapidly and completely metabolized in corn. No 
    single extract or component accounted for greater than 0.01 ppm in 
    grain. Numerous components were characterised in forage and fodder, 
    including the metabolite 2-amino-4-methylsulfonyl benzoic acid (AMBA) 
    and its conjugates and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA). In 
    addition to ZA1296, MNBA was included in crop residue analysis.
        2. Analytical method. The proposed analytical method involves 
    extraction, partition, clean-up and separation of ZA1296 and MNBA, 
    oxidation of ZA1296, reduction, clean-up and detection of residues by 
    reversed-phase HPLC using fluorescence detection. The limit of 
    quantitation for ZA1296 and the metabolite MNBA is 0.01 ppm.
        3. Magnitude of residues. Twenty residue trials were conducted in 
    the US (EPA regions I, II, V and VI). The proposed use of ZA1296 does 
    not result in residues (LOQ of 0.01 ppm) of ZA1296 or the metabolite 
    MNBA in field corn grain, forage or fodder.
    
    B. Toxicological Profile
    
        1. Acute toxicity. A battery of acute toxicity tests were conducted 
    which place ZA1296 in acute oral toxicity category IV, acute dermal 
    toxicity category III, acute inhalation toxicity category IV, primary 
    eye irritation category III, and primary dermal irritation category IV. 
    ZA1296 is not a skin sensitizer. ZA1296 is not a neurotoxin in males 
    and females at 2,000 mg/kg (limit test).
        2. Genotoxicty. ZA296 was found to be negative for mutagenicity in 
    a battery of mutagenicity tests (in vitro) Ames Testing, Mouse 
    Lymphoma, Human Lymphocytes and in vivo Mouse Micronucleus).
        3. Reproductive and developmental toxicity--i. Developmental 
    toxicity (rabbit). New Zealand white rabbits were dosed orally by 
    gavage with 0, 100, 250 or 500 mg/kg/day ZA1296 on days 8-20 of 
    gestation. The top dose level in this study was set on the basis of 
    significant maternal toxicity seen at higher dose levels in a 
    preliminary study. At dose levels of 250 and 500 mg/kg/day there was a 
    low incidence of whole litter losses. ZA1296 was not associated with 
    significant maternal toxicity or evidence of teratogenicity. Dose 
    levels of 100 mg/kg/day or more were associated with changes in the 
    ossification of the fetal skeleton but not with structural 
    malformation. The changes in ossification are transient in nature and 
    considered not to be of toxicological significance in terms of post 
    natal development. A developmental NOAEL of 100 mg/kg/day was 
    established in this study.
        ii. Developmental toxicity (rat). Rats were dosed orally by gavage 
    with 0, 100, 300 or 1,000 mg/kg/day ZA1296 on days 7-16 of gestation. 
    Maternal toxicity, as evidenced by reductions in body weight and food 
    consumption, was seen at dose levels of 100, 300 or 1,000 mg/kg/day 
    ZA1296. Administration of ZA1296 at dose levels of up to 1,000 mg/kg/
    day produced no evidence of teratogenicity. An increased incidence of 
    minor skeletal defects and skeletal variants and increases in mean 
    manus and pes scores were seen at all dose levels and were indicative 
    of reduced ossification or a disturbance in the normal pattern of 
    ossification. The changes in ossification are transient in nature and 
    are considered not to be of toxicological significance in terms of 
    post-natal development. Fetal weight was reduced at 1,000 mg/kg/day. A 
    developmental NOAEL of 300 mg/kg/day was established in this study.
        iii. Reproductive toxicity (rat). In a 3-generation study rats were 
    fed diets containing 0, 2.5, 10 or 2500 ppm ZA1296. Dietary 
    administration of ZA1296 had no effect on mating performance but was 
    found to result in reduced pup survival at a dose of 2,500 ppm in all 
    3-generations and at 100 ppm in the second generation only. These 
    findings were not present in recovery subgroups removed from treated 
    diet in the third generation. There was also a reduction in the number 
    of pups per litter, and effects on body weights and in the eye and 
    kidney. In the third generation, there were no effects in the eyes or 
    kidneys of offspring from animals which were returned to control diet 4 
    weeks prior to mating and effects on litter size were less marked than 
    in the continuous treatment group. A NOEL of 2.5 ppm ZA1296 (0.3 mg/kg/
    day) was established in this study. In light of the mechanism of 
    toxicity, investigations into the effects seen in this study in pups 
    are considered not to be relevant to human risk assessment.
        iv.  Reproductive toxicity (mouse). In a 2-generation study mice 
    were fed diets containing 0, 10, 50, 350, 1,500 or 7.000 ppm ZA1296. 
    There were no adverse effect of ZA1296 on the reproductive performance 
    of the mouse, on fertility and fecundity of the F0 and F1 adult animals 
    or on survival of their offspring. The body weights of the offspring 
    were reduced at 1,500 and 7,000 ppm ZA1296. A NOEL of 350 ppm ZA1296 
    (71 mg/kg/day) was established in this study.
        4. Subchronic toxicity--i. 21-day dermal (rabbits). Rabbits were 
    repeatedly dosed with ZA1296 at 0, 10,
    
    [[Page 29408]]
    
    500 or 1,000 mg/kg/day for 21 days. The NOEL for sub-acute dermal 
    toxicity was >1,000 mg/kg/day (limit dose).
        ii. 90-day rodent (rat). In a first study male and female rats were 
    dosed with 0, 1, 125, 1,250 or 12,500 ppm ZA1296 in the diet for 90-
    days. The NOEL was determined to be 1ppm for males and females (0.09 
    and 0.1 mg/kg/day, respectively) based on reduced bodyweight and 
    increased liver weight in males and females at 125 ppm and increased 
    kidney weight and ocular keratitis in males at 125 ppm. 125 ppm (13 mg/
    kg/day) was a NOEL for the ocular keratitis in females. In a second 
    study in male rats dosed with ZA1296 at 0, 10, 20 or 150 ppm ZA1296 in 
    the diet for 90-days, a NOEL of 20 ppm (1.7 mg/kg/day) was determined 
    for reduced bodyweight. At the 10 ppm dose level ocular keratitis and 
    increased liver and kidney weights were observed. In a third study in 
    male and female rats dosed with ZA1296 at 0, 2.5, 5.0, 7.5 or 150 ppm 
    in the diet for 90-days, NOELs of 5 ppm (0.41 mg/kg/day) for ocular 
    keratitis and increased kidney weight and 7.5 ppm (0.63 mg/kg/day) for 
    reduced bodyweight were determined in males. NOELs of 7.5 ppm (0.71 mg/
    kg/day) for reduced bodyweight and increased liver weight and 150 ppm 
    (14 mg/kg/day) for increased kidney weight were determined in females. 
    At 2.5 ppm in males increased liver weight was observed. In light of 
    investigations into the mechanism of toxicity, these changes are all 
    considered not to be relevant to human risk assessment.
        iii. 90-day rodent (mouse). Mice were dosed 0, 50, 350 or 7,000 ppm 
    in the diet for 90-days. In females no clear toxic effects were 
    observed at 7,000 ppm (1,500 mg/kg/day). In males 7,000 ppm (1,200 mg/
    kg/day) was associated with a reduced growth rate and food utilization. 
    In males and females 350 ppm (62 and 80 mg/kg/day, respectively) 
    produced no effects which were considered to be toxicologically 
    significant.
        iv. 90-day non-rodent (dog). Beagle dogs were dosed with ZA1296 at 
    0, 100, 600 or 1,000 mg/kg/day as a daily oral dose by capsule, for a 
    period of 90-days. The NOEL in the dog over 90-days was 100 mg/kg/day. 
    Minimal toxicity was observed at 600 and 1,000 mg/kg/day, evident as 
    reduced bodyweights in males and a microcytic polycythemia in both 
    sexes. Mesothelial proliferation of the atrium of the heart was evident 
    in 2 male dogs at 1,000 mg/kg/day.
        v. 90-day neurotoxicity (rat). Rats were dosed with ZA1296 at 0, 
    2.5, 100 or 5,000 ppm in the diet for 90-days. The NOAEL for subchronic 
    neurotoxicity was determined to be 5,000 ppm (400 and 460 mg/kg/day for 
    males and females, respectively) based on the absence of changes 
    indicative of neurotoxicity.
        5. Chronic toxicity--i. 1-year non-rodent (dog). Beagle dogs were 
    dosed with ZA1296 at 0, 10, 100 or 600 mg/kg/day as a daily oral dose 
    by capsule, for a period of 1-year. The NOEL in this study was 100 mg/
    kg/day. At 600 mg/kg/day males showed a significant reduction in 
    bodyweight and both sexes showed a slight microcytic polycythemia, 
    indicating that a maximum tolerated dose had been achieved. Minimal 
    ocular keratitis was observed in 1 male and 1 female at 600 mg/kg/day.
        ii. 1-year rodent (mouse). Mice were dosed with ZA1296 at 0, 10, 
    50, 350 or 7,000 ppm in the diet for 1 year. The NOEL in males and 
    females was 350 ppm (56 and 72 mg/kg/day, respectively). At 7,000 ppm 
    (limit dose) bodyweight was reduced in males, and there was an 
    increased incidence of eosinophilic change in the gall bladder of 
    females.
        iii. Combined rodent chronic toxicity/oncogenicity (rat). Rats were 
    dosed with ZA1296 at 0, 7.5, 100 or 2,500 ppm in the diet for up to 2 
    years. In addition rats were fed diet containing 1 or 2.5 ppm ZA1296 
    for up to 2-years to determine the chronic ocular toxicity. Oral 
    administration of 7.5, 100 or 2,500 ppm ZA1296 for at least 2-years 
    caused ocular keratitis, reduced bodyweights, increased liver and 
    kidney weights, and an increased incidence of common spontaneous 
    lesions in the Alderley Park rat. In light of investigations into the 
    mechanism of toxicity, these changes are all considered not to be 
    related to human risk assessment. Satellite groups of rats fed 1 and 
    2.5 ppm ZA1296 showed that dietary levels of 2.5 ppm in males and 7.5 
    ppm in females were without ocular effect. ZA1296 was considered not to 
    be carcinogenic in the rat in this study. A NOEL of 7.5 ppm ZA1296 was 
    established for females.
        iv. Oncogenicity in the rodent (mouse). Mice were fed diets 
    containing 0, 10, 350 or 7,000 ppm ZA1296 for up to 80-weeks. Oral 
    administration of 7,000 ppm (900-1,100 mg/kg/day) ZA1296 (limit dose) 
    for at least 80-weeks produced no evidence of carcinogenicity in male 
    or female mice.
        6. Animal metabolism. The absorption, distribution, metabolism and 
    excretion of ZA1296 has been thoroughly investigated in rats and 
    studied in mice. In both species ZA1296 is well absorbed following an 
    oral dose. Elimination of ZA1296 is rapid in both species, with most of 
    the ZA1296 eliminated, in the urine, unchanged with only minor amounts 
    of the urinary and fecal metabolites, including MNBA and AMBA, 
    detected. In poultry ZA1296 is excreted generally unchanged. In 
    ruminants ZA1296 is extensively metabolised and excreted. AMBA dosed to 
    ruminants is readily absorbed and excreted, generally unchanged. AMBA 
    is not accumulated in edible tissues or milk.
        7. Metabolite toxicology. In acute oral toxicity studies in male 
    and female rats both MNBA and AMBA had an oral LD50 of 
    >5,000 mg/kg. In the Ames assay, both MNBA and AMBA were found to be 
    negative for mutagenicity in the absence and presence of metabolic 
    activation.
        8. Endocrine disruption. EPA is required to develop a screening 
    program to determine whether certain substances (including all 
    pesticides and inerts) ``may have an effect in humans that is similar 
    to an effect produced by a naturally occurring estrogen, or such other 
    endocrine effect.'' EPA is currently working with interested 
    shareholders, including other government agencies, public interest 
    groups, industry, and research scientists, to develop a screening and 
    testing program and a priority setting scheme to implement this 
    program. Congress has allowed 3-years from the passage of FQPA (August 
    3, 1999) to implement this program. When this program is implemented, 
    EPA may require further testing of ZA1296 and end-use product 
    formulations for endocrine disrupter effects.
        9. Reference dose. As required by the Food Quality and Protection 
    Act of 1996, the mechanism of toxicity of ZA1296 has been thoroughly 
    investigated in studies (FQPA) in the rat, mouse and man. These data 
    clearly demonstrate that the response to ZA1296 administration in man 
    is very similar to that seen in the mouse which should therefore, be 
    used in preference to the rat when assessing the safety of ZA1296 to 
    humans. The proposed reference dose (RfD) for use in the assessment of 
    risk from chronic exposure is 0.56 mg/kg/day and is derived from the 1 
    year chronic toxicity study in the mouse with a NOEL of 56 mg/kg/day 
    and a 100-fold uncertainty factor.
    
    C. Aggregate Exposure
    
        1. Dietary exposure. The potential dietary exposure to ZA1296 was 
    estimated from tolerance levels and 100% crop treated. No tolerances 
    are proposed for meat, milk and eggs. The total dietary exposure for 
    the U.S. population and the most highly exposed
    
    [[Page 29409]]
    
    subgroup in the population, non-nursing infants, is 0.000011 mg/kg/day 
    and 0.000027 mg/kg/day, respectively.
        2. Drinking water. Drinking water estimated concentrations (DWEC) 
    were calculated using EPA models for groundwater and surface water - 
    SCI-GROW, GENEEC and PRZM/EXAMS. Chronic Drinking Water Levels of 
    Concern (DWLOC) were calculated according to the EPA SOP and compared 
    to the DWEC. Estimated average contributions of ZA1296 in surface and 
    groundwater are less than the levels of concern for ZA1296 in drinking 
    water as a contribution to chronic aggregate exposure.
        3. Non-dietary exposure. Zeneca has not estimated non-occupational 
    exposure for ZA1296 since the only pending registration for ZA1296 is 
    limited to commercial crop production use. ZA1296 products are not 
    labelled for any residential uses therefore, eliminating the potential 
    for residential exposure. The potential for non-occupational exposure 
    to the general population is considered to be insignificant.
    
    D. Cumulative Effects
    
        Zeneca also considered the potential for cumulative effects of 
    ZA1296 and other substances that have a common mechanism of toxicity. 
    Zeneca has concluded that consideration of a common mechanism of 
    toxicity is not appropriate at this time since there is no indication 
    that toxic effects produced by ZA1296 would be cumulative with those of 
    any other chemical compounds. Triketone chemistry is new and ZA1296 has 
    a novel mode of action compared to currently registered active 
    ingredients.
    
    E. Safety Determination
    
        1. U.S. population. Dietary and occupational exposure will be the 
    major routes of exposure to the U.S. population and ample margins of 
    safety have been demonstrated for both situations. The total dietary 
    exposure for the U.S. population is 0.000011 mg/kg/day. This utilizes 
    only 0.002% of the RfD. The MOE for occupational exposure is >5,500. 
    Based on the completeness and reliability of the toxicity data and the 
    conservative exposure assessments, there is reasonable certainty that 
    no harm will result from the aggregate exposure of residues of ZA1296 
    including all anticipated dietary exposure.
        2. Infants and children. The total dietary exposure for the most 
    highly exposed subgroup in the population, non-nursing infants, is 
    0.000027 mg/kg/day. This utilizes only 0.0048% of the RfD. There are no 
    residential uses of ZA1296 and the estimated average contributions of 
    ZA1296 in surface and groundwater are less than the levels of concern 
    for ZA1296 in drinking water as a contribution to chronic aggregate 
    exposure. Based on the completeness and reliability of the toxicity 
    data and the conservative exposure assessments, there is reasonable 
    certainty that no harm will result from the aggregate exposure of 
    residues of ZA1296 including all anticipated dietary exposure.
    
    F. International Tolerances
    
        A maximum residue level has not been established for ZA1296 by the 
    Codex Alimentarius Commission.
    [FR Doc. 98-14160 Filed 5-28-98; 8:45 am]
    BILLING CODE 6560-50-F
    
    
    

Document Information

Published:
05/29/1998
Department:
Environmental Protection Agency
Entry Type:
Notice
Action:
Notice.
Document Number:
98-14160
Dates:
Comments, identified by the docket control number PF-806, must be received on or before June 29, 1998.
Pages:
29401-29409 (9 pages)
Docket Numbers:
PF-806, FRL-5791-2
PDF File:
98-14160.pdf