97-22508. Amendments for Testing and Monitoring Provisions  

  • [Federal Register Volume 62, Number 166 (Wednesday, August 27, 1997)]
    [Proposed Rules]
    [Pages 45369-45377]
    From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
    [FR Doc No: 97-22508]
    
    
    
    [[Page 45369]]
    
    =======================================================================
    -----------------------------------------------------------------------
    
    ENVIRONMENTAL PROTECTION AGENCY
    
    40 CFR Parts 60, 61, and 63
    
    [FRL-5880-8]
    RIN 2060-AG21
    
    
    Amendments for Testing and Monitoring Provisions
    
    AGENCY: Environmental Protection Agency (EPA).
    
    ACTION: Proposed rule: Amendments.
    
    -----------------------------------------------------------------------
    
    SUMMARY: This action proposes amendments to 40 CFR parts 60, 61, and 63 
    to reflect miscellaneous editorial changes and technical corrections 
    throughout the parts in sections pertaining to source testing or 
    monitoring of emissions and operations, and proposes to add Performance 
    Specification 15 (PS 15) to Appendix B of Part 60. In addition, the 
    test methods in Appendix A of Part 60, Appendix B of Part 61, Appendix 
    A of Part 63, and the performance specifications in Appendix B of Part 
    60 are proposed to be restructured in the format recommended by the 
    Environmental Monitoring Management Council (EMMC) to achieve 
    uniformity and consistency between Agency methods. The editorial 
    changes and technical corrections to the subparts, test methods, and/or 
    performance specifications in Parts 60, 61, and 63 are proposed to 
    maintain the intent of the regulations.
    
    DATES: Comments. Comments must be received on or before October 27, 
    1997 unless a hearing is requested by September 8, 1997. If a hearing 
    is requested, written comments must be received by October 14, 1997.
        Public Hearing. Anyone requesting a public hearing must contact EPA 
    no later than September 8, 1997. If a hearing is held, it will take 
    place on September 10, 1997, beginning at 9:00 a.m.
        Request To Speak at Hearing. Persons wishing to present oral 
    testimony must contact EPA by September 10, 1997.
    
    ADDRESSES: Comments. Comments should be submitted (in duplicate, if 
    possible) to: Air and Radiation Docket and Information Center (6102), 
    Attention Docket No. A-97-12 (see docket section below), room M-1500, 
    U.S. Environmental Protection Agency, 401 M Street, SW., Washington, DC 
    20460. The Agency requests that a separate copy also be sent to the 
    person listed in the FOR FURTHER INFORMATION CONTACT section below.
        Public Hearing. If anyone contacts EPA requesting a public hearing, 
    it will be held at the EPA's Emissions Measurement Laboratory, Research 
    Triangle Park, North Carolina. Persons interested in attending the 
    hearing or wishing to present oral testimony should notify Ms. Lala 
    Cheek (MD-19), U.S. Environmental Protection Agency, Research Triangle 
    Park, NC 27711, telephone (919) 541-5545.
        Docket. Docket No. A-97-12, containing materials relevant to this 
    rulemaking, is available for public inspection and copying between 8:00 
    a.m. and 5:30 p.m., Monday through Friday, except for Federal holidays, 
    at the EPA's Air and Radiation Docket and Information Center, Room M-
    1500, U.S. Environmental Protection Agency, 401 M Street, SW., 
    Washington, DC 20460; telephone (202) 260-7548. A reasonable fee may be 
    charged for copying.
    
    FOR FURTHER INFORMATION CONTACT:
    Mr. Foston Curtis, Emission Measurement Center (MD-19), Emissions, 
    Monitoring, and Analysis Division, U.S. Environmental Protection 
    Agency, Research Triangle Park, North Carolina 27711, telephone number 
    (919) 541-1063 or at fax number (919) 541-1039.
    
    SUPPLEMENTARY INFORMATION: The information presented in this preamble 
    is organized as follows:
    
    I. Background and Purpose
    II. EMMC Format
    III. Significant Technical Revisions to Specific Test Methods, 
    Performance Specifications, and Rules
        A. General
        B. ASTM Methods Updates
        C. Continuous Instrumental Methods (Part 60, Appendix A)--
    Methods 3A, 6C, 7E, 10, and 20
        D. Method 5 (Part 60, Appendix A)
        E. Method 5E (Part 60, Appendix A)
        F. Method 5H (Part 60, Appendix A)
        G. Method 18 (Part 60, Appendix A)
        H. Methods 306, 306A, and 306B (Part 63, Appendix A)
    IV. Addition of Performance Specification 15
    V. Copies of Regulatory Text
    VI. Administrative Requirements
        A. Docket
        B. Office of Management and Budget Review
        C. Regulatory Flexibility Act
        D. Paperwork Reduction Act
        E. Unfunded Mandates Reform Act
    
    I. Background and Purpose
    
        As part of its efforts to promote methods consolidation and 
    integration between EPA Program Offices, the EMMC developed a consensus 
    format for documentation of analytical methods. The Office of Air and 
    Radiation has adapted the format for its new methods and is attempting 
    to update its existing methods to this format. The EMMC format is shown 
    in Section II. To achieve consistency between the test methods and 
    performance specifications, EPA is proposing to restructure the test 
    methods and performance specifications shown in Table 1 in the EMMC 
    format. In addition, EPA reviewed the test methods and performance 
    specifications and associated regulations in 40 CFR Parts 60, 61, and 
    63 and found that corrections and revisions were necessary. The 
    corrections and revisions consisted primarily of typographical errors, 
    technical errors in equations and diagrams, and narrative that is no 
    longer applicable due to more recent additions. However, a few methods 
    required further revision due to needed technical updates and comments 
    received from the public. These methods are discussed in Section III. 
    It is important to note that although numerous technical corrections 
    were made to portions of the subparts in Parts 60, 61, and 63, changes 
    were not made to any compliance standard, reporting, or recordkeeping 
    requirement. For this notice, EPA is only proposing revisions to 
    sections of the subpart pertaining to source testing or monitoring of 
    emissions and operations.
    
    II. EMMC Format
    
        The test methods and performance specifications listed in Table 1 
    are being proposed in the restructured format shown in Table 2 which is 
    recommended by EMMC. Only in a few instances were there any deviations 
    from this recommended format.
    
                  Table 1.--Test Methods and Performance Specifications Restructured in the EMMC Format             
    ----------------------------------------------------------------------------------------------------------------
                                                                                                 40 CFR 63, appendix
       40 CFR part 60, appendix A     40 CFR part 60, appendix B       40 CFR 61, appendix B              A         
    ----------------------------------------------------------------------------------------------------------------
    1, 1a..........................  PS-2........................  101, 101a...................  303, 303a          
    2, 2a, 2b, 2c,.................  PS-3........................  102.........................  304a,              
    2d, 2e.........................  PS-4, PS-4a.................  103.........................  304b               
    3, 3a, 3b......................  PS-5........................  104.........................  305                
    
    [[Page 45370]]
    
                                                                                                                    
    4..............................  PS-6........................  105.........................  306,               
    5, 5a, 5b, 5d,.................  PS-7........................  106.........................  306a,              
    5e, 5f, 5g, 5h.................  PS-8........................  107, 107a...................  306b               
    6, 6a, 6b, 6c..................  PS-9........................  108.........................  ...................
    7, 7a, 7b, 7c,.................  ............................  108a........................  ...................
    7d, 7e.........................  ............................  108b........................  ...................
    8..............................  ............................  108c........................  ...................
    10, 10a, 10b...................  ............................  111.........................  ...................
    11.............................  ............................  ............................  ...................
    12.............................  ............................  ............................  ...................
    13a, 13b.......................  ............................  ............................  ...................
    14.............................  ............................  ............................  ...................
    15, 15a........................  ............................  ............................  ...................
    16, 16a, 16b...................  ............................  ............................  ...................
    17.............................  ............................  ............................  ...................
    18.............................  ............................  ............................  ...................
    19.............................  ............................  ............................  ...................
    20.............................  ............................  ............................  ...................
    21.............................  ............................  ............................  ...................
    22.............................  ............................  ............................  ...................
    23.............................  ............................  ............................  ...................
    24, 24a........................  ............................  ............................  ...................
    25, 25a, 25b,..................  ............................  ............................  ...................
    25c, 25d, 25e..................  ............................  ............................  ...................
    26, 26a........................  ............................  ............................  ...................
    27.............................  ............................  ............................  ...................
    28, 28a........................  ............................  ............................  ...................
    29.............................  ............................  ............................  ...................
    ----------------------------------------------------------------------------------------------------------------
    
    
                              Table 2.--EMMC Format                         
    ------------------------------------------------------------------------
                 Section No.                        Section heading         
    ------------------------------------------------------------------------
    1.0.................................  Scope and Application.            
    2.0.................................  Summary of the Method.            
    3.0.................................  Definitions.                      
    4.0.................................  Interferences.                    
    5.0.................................  Safety.                           
    6.0.................................  Equipment and Supplies.           
    7.0.................................  Reagents and Standards.           
    8.0.................................  Sample Collection, Preservation,  
                                           Storage and Transport.           
    9.0.................................  Quality Control.                  
    10.0................................  Calibration and Standardization.  
    11.0................................  Analytical Procedure.             
    12.0................................  Calculations and Data Analysis.   
    13.0................................  Method Performance.               
    14.0................................  Pollution Prevention.             
    15.0................................  Waste Management.                 
    16.0................................  References.                       
    17.0................................  Tables, Diagrams, Flowcharts, and 
                                           Validation Data.                 
    ------------------------------------------------------------------------
    
    III. Significant Technical Revisions to Specific Test Methods, 
    Performance Specifications, and Rules
    
    A. General
    
        A safety section (Section 5) was added to most of the test methods 
    and performance specifications. This section discusses only those 
    safety issues specific to the method and any target analytes or 
    reagents that pose specific toxicity or safety issues.
    
    B. ASTM Methods Updates
    
        The American Society for Testing and Materials assisted EPA in 
    revising test method references of ASTM methods by providing an update 
    of all ASTM procedures cited in the test methods. Many Agency methods 
    cite obsolete versions of ASTM methods that have been improved and 
    redated or redesignated since the EPA methods were promulgated. Where 
    appropriate, the redated and redesignated versions are included to add 
    flexibility and clarify which methods may be used. In addition, the 
    Incorporation by Reference citations in Sec. 60.17 are amended to add 
    the updated ASTM versions. The Agency is grateful for ASTM's assistance 
    in this effort.
    
    C. Continuous Instrumental Methods (Part 60, Appendix A)--Methods 3A, 
    6C, 7E, 10, and 20
    
        The continuous instrumental methods have been coordinated to 
    require the same performance specifications and, where applicable, the 
    same testing procedures and equipment specifications.
    
    D. Method 5 (Part 60, Appendix A)
    
        Section 6.1.1.7 (formerly Section 2.1.6) specifies that a 
    temperature sensor be installed so that the sensing tip of the 
    temperature sensor is in direct contact with the sample gas and that 
    the temperature around the filter holder be regulated and monitored 
    during sampling. EPA recognized that, depending on the sampling 
    apparatus, temperature in the heating area may be measured at different 
    locations (e.g., near the heater or at the top of the heated area) 
    resulting in deviations from the recommended temperature range of 
    24825 deg.F. This modification was made so that temperature 
    inside the heating area is measured at a consistent location in the gas 
    stream. This modification requires that an extra temperature sensor be 
    used with the filter heating system.
    
    E. Method 5E (Part 60, Appendix A)
    
        Section 6.3.4 (formerly Section 2.3.4) no longer specifies the 
    Beckman Model 915 analyzer with a 215 B infrared or equivalent. Since 
    the Beckman Model 915 is no longer manufactured, the EPA determined 
    that the Rosemount Model 2100A TOC analyzer was comparable to the 
    Beckman 915 model. As a result, Section 6.3.4 no longer specifies the 
    Beckman Model 915 with 215 B infrared or equivalent but instead, the 
    Rosemount Model 2100A TOC analyzer.
    
    F. Method 5H (Part 60, Appendix A)
    
        Section 7.3.4.1 (formerly Section 3.3.1.4) has been revised to 
    specify that only three calibration gas levels (high-range, mid-range, 
    and zero gases) are needed to calibrate the carbon dioxide, carbon 
    monoxide, and sulfur dioxide
    
    [[Page 45371]]
    
    (SO2) analyzers instead of four calibration gas levels. The 
    low-range calibration gas is no longer required. This revision is 
    consistent with the gas levels used to calibrate the SO2 
    analyzer as described in Section 7.4 (formerly Section 5.3) of Method 
    6C (Determination of Sulfur Dioxide Emissions from Stationary Sources).
    
    G. Method 18 (Part 60, Appendix A)
    
        The Agency is soliciting comments on procedural modifications to 
    Method 18 being proposed in this action. In the direct interface 
    sampling procedure, the requirement for two consecutive samples to have 
    less than 5 percent difference is being replaced with taking 5 
    consecutive samples per run. This modification allows for direct 
    interface sampling to be used in cases where the process is highly 
    variable. The adsorbent tube procedure is being modified to allow the 
    source to choose any commercially available adsorbent material, instead 
    of relying on the few adsorbents listed in the previous version of the 
    method. In preparing calibration gases, it is proposed to allow the use 
    of gas dilution instruments meeting the requirements of Method 205 of 
    40 CFR part 51, appendix M.
    
    H. Methods 306, 306A, and 306B (Part 63, Appendix A)
    
        Numerous editorial revisions were made to clarify the requirements 
    of Methods 306, 306A, and 306B. The applicability sections of Methods 
    306, 306A, and 306B have been revised to add continuous chromium 
    plating at iron and steel facilities to the list of source categories 
    to which these methods apply. The requirement for filtration of all 
    samples to be analyzed by ion chromatography has been eliminated from 
    Section 9.2 (formerly Section 5.2.3) of Method 306 and Section 9.2 
    (formerly Section 5.2.3) of Method 306A. Instead, a qualifying note has 
    been added stating that filtration is not required if a sample does not 
    contain particulate matter. The filtration procedure would only apply 
    when visible particulate is present in the sample (chromium 
    electroplating and anodizing baths emit little, if any particulate); 
    when needed, the tester is referred to the filtration procedure in 
    Method 0061 in Test Methods for Evaluating Solid Waste, Physical/
    Chemical Methods, SW-846 Manual, November 1986. Section 9.2.2 (formerly 
    Section 5.1) of Method 306 has been revised to modify the post-sampling 
    pH requirement for the sodium bicarbonate absorbing solution when it 
    will be submitted to analysis by ion chromatography for hexavalent 
    chromium. The pH must be 8.0 rather than 8.5, as 
    the sodium bicarbonate solution does not reach a pH of 8.5. This 
    requirement has also been added to Section 9.2.2 of Method 306A. 
    Specific requirements for sample storage and sample holding times have 
    been added to Sections 9.3 and 9.4, respectively, of Methods 306 and 
    306A. Section 9.1.2.3 (formerly Section 5.1.2.3) of Method 306A has 
    been revised to add an option to adjust the sample volume for leaks 
    discovered during the post-test leak-check. This option is consistent 
    with that of Method 5 (40 CFR part 60, appendix A).
    
    IV. Addition of Performance Specification 15
    
        Performance Specification 15 is being proposed for addition to 
    Appendix B of Part 60. Performance specification 15 may be used by 
    sources to certify extractive Fourier Transform Infrared spectroscopy 
    (FTIR) continuous emission monitors for regulated pollutants. The 
    specification will determine the acceptability of FTIR continuous 
    emission monitoring systems and is not source-specific. The procedure 
    gives the source the option of using several techniques for FTIR 
    certification including relative accuracy testing, spiking of target 
    compounds, and comparison of dual instruments.
    
    V. Copies of Regulatory Text
    
        The text of the other proposed amendments is not included in this 
    Federal Register action because of the magnitude of the reformatted 
    test methods and amendments. The significant proposed amendments are 
    discussed fully in this preamble. Performance Specification 15, which 
    is a new procedure, is being published with this action as a proposed 
    amendment to appendix B to part 60. The unpublished proposed amendments 
    are available in Docket A-97-12 or by request from the Air and 
    Radiation Docket and Information Center (see ADDRESSES) or the EPA 
    contact person listed in the preceding FOR FURTHER INFORMATION CONTACT 
    section. The proposed amendments may also be obtained over the Internet 
    at http://www.epa.gov/oar/oaqps/emc; choose the ``Test Methods'' menu, 
    then choose ``Proposed Test Methods.'' The amendments will be listed on 
    the EPA Technology Transfer Network (TTN). The TTN is a network of 
    electronic bulletin boards developed and operated by the Office of Air 
    Quality Planning and Standards. The TTN provides information and 
    technology exchange in various areas of air pollution control. The 
    service is free, except for the cost of the phone call. Dial (919) 541-
    5742 for data transfer of up to a 14,400 bps modem. Select TTN Bulletin 
    Board: ``Emission Measurement Technical Information Center (EMTIC)'' 
    and select menu item ``Proposed Methods.'' If more information on the 
    operation of the TTN is needed, contact the systems operator at (919) 
    541-5384.
    
    VI. Administrative Requirements
    
    A. Docket
    
        The docket is an organized and complete file of all information 
    submitted to or otherwise considered by EPA in the development of this 
    proposed rulemaking. The principal purposes of the docket are: (1) To 
    allow interested parties to identify and locate documents so that they 
    can effectively participate in the rulemaking process, and (2) to serve 
    as the record in case of judicial review (except for interagency review 
    materials) [Clean Air Act Section 307(d)(7)(A)].
    
    B. Office of Management and Budget Review
    
        Under Executive Order 12866 (58 FR 51735 October 4, 1993), EPA is 
    required to judge whether a regulation is ``significant'' and therefore 
    subject to Office of Management and Budget (OMB) review and the 
    requirements of this Executive Order to prepare a regulatory impact 
    analysis (RIA). The Order defines ``significant regulatory action'' as 
    one that is likely to result in a rule that may:
        (1) Have an annual effect on the economy of $100 million or more or 
    adversely affect in a material way the economy, a sector of the 
    economy, productivity, competition, jobs, the environment, public 
    health or safety, or State, local, or tribal governments or 
    communities;
        (2) Create a serious inconsistency or otherwise interfere with an 
    action taken or planned by another agency;
        (3) Materially alter the budgetary impact of entitlements, grants, 
    user fees, or loan programs, or the rights and obligation of recipients 
    thereof; or
        (4) Raise novel legal or policy issues arising out of legal 
    mandates, the President's priorities, or the principles set forth in 
    the Executive Order. This rulemaking does not impose emission 
    measurement requirements beyond those specified in the current 
    regulations, nor does it change any emission standard. The Agency has 
    determined that this regulation would result in none of the adverse 
    economic effects set forth in Section 1 of the Order as grounds for 
    finding the regulation to be a significant rule. The Agency has,
    
    [[Page 45372]]
    
    therefore, concluded that this regulation is not a significant rule 
    under Executive Order 12866.
    
    C. Regulatory Flexibility Act
    
        The EPA has determined that it is not necessary to prepare a 
    regulatory flexibility analysis in connection with this proposed rule. 
    The EPA has also determined that this rule will not have a significant 
    adverse impact on a substantial number of small businesses. This 
    rulemaking does not impose emission measurement requirements beyond 
    those specified in the current regulations, nor does it change any 
    emission standard. As such, it will not present a significant economic 
    impact on a substantial number of small businesses.
    
    D. Paperwork Reduction Act
    
        The rule does not impose or change any information collection 
    requirements subject to OMB review under the Paperwork Reduction Act, 
    44 U.S.C. 3501 et seq.
    
    E. Unfunded Mandates Reform Act
    
        Under Section 202 of the Unfunded Mandates Reform Act of 1995 
    (``Unfunded Mandates Act'') signed into law on March 22, 1995, EPA must 
    prepare a budgetary impact statement to accompany any proposed or final 
    rule that includes a Federal mandate that may result in estimated costs 
    to State, local, or tribal governments in the aggregate, or to the 
    private sector, of $100 million or more. Under Section 205, EPA must 
    select the most cost-effective and least burdensome alternative that 
    achieves the objectives of the rule and is consistent with statutory 
    requirements. Section 203 requires EPA to establish a plan for 
    informing and advising any small governments that may be significantly 
    or uniquely impacted by the rule.
        The EPA has determined that the action proposed today does not 
    include a Federal mandate that may result in estimated costs of $100 
    million or more to either State, local, or tribal governments in the 
    aggregate, or to the private sector, nor does this action significantly 
    or uniquely impact small governments, because this action contains no 
    requirements that apply to such governments or impose obligations upon 
    them. Therefore, the requirements of the Unfunded Mandates Act do not 
    apply to this action.
    
    List of Subjects in 40 CFR Part 60
    
        Environmental protection, Air pollution control, New sources, Test 
    methods and procedures, Performance specifications, Continuous emission 
    monitors.
    
    40 CFR Part 61
    
        Environmental protection, Air pollution control, Test methods and 
    procedures.
    
    40 CFR Part 63
    
        Environmental protection, Air pollution control, Hazardous air 
    pollutants, Test methods and procedures.
    
        Dated: August 18, 1997.
    Carol M. Browner,
    Administrator.
    
        It is proposed that 40 CFR part 60 be amended as follows:
    
        1. The authority citation for part 60 continues to read as follows:
    
        Authority: 42 U.S.C. 7401, 7411, 7414, 7416, 7601 and 7602.
    
        2. By adding Performance Specification 15 in numerical order to 
    Appendix B to read as follows:
    
    Appendix B--Performance Specifications
    
    * * * * *
    
    Performance Specification 15--Performance Specification for 
    Extractive FTIR Continuous Emissions Monitor Systems in Stationary 
    Sources
    
        1.0  Scope and Application. 1.1 Analytes. This performance 
    specification is applicable for measuring all hazardous air 
    pollutants (HAPs) which absorb in the infrared region and can be 
    quantified using Fourier Transform Infrared Spectroscopy (FTIR), as 
    long as the performance criteria of this performance specification 
    are met. This specification is to be used for evaluating FTIR 
    continuous emission monitoring systems for measuring HAPs regulated 
    under Title III of the 1990 Clean Air Act Amendments. This 
    specification also applies to the use of FTIR CEMs for measuring 
    other volatile organic or inorganic species.
        1.2  Applicability. A source which can demonstrate that the 
    extractive FTIR system meets the criteria of this performance 
    specification for each regulated pollutant may use the FTIR system 
    to continuously monitor for the regulated pollutants.
        2.0  Summary of Performance Specification. For compound-specific 
    sampling requirements refer to FTIR sampling methods (e.g., 
    reference 1). For data reduction procedures and requirements refer 
    to the EPA FTIR Protocol (reference 2), hereafter referred to as the 
    ``FTIR Protocol.'' This specification describes sampling and 
    analytical procedures for quality assurance. The infrared spectrum 
    of any absorbing compound provides a distinct signature. The 
    infrared spectrum of a mixture contains the superimposed spectra of 
    each mixture component. Thus, an FTIR CEM provides the capability to 
    continuously measure multiple components in a sample using a single 
    analyzer. The number of compounds that can be speciated in a single 
    spectrum depends, in practice, on the specific compounds present and 
    the test conditions.
        3.0  Definitions. For a list of definitions related to FTIR 
    spectroscopy refer to Appendix A of the FTIR Protocol. Unless 
    otherwise specified, spectroscopic terms, symbols and equations in 
    this performance specification are taken from the FTIR Protocol or 
    from documents cited in the Protocol. Additional definitions are 
    given below.
        3.1  FTIR Continuous Emission Monitoring System (FTIR CEM).
        3.1.1  FTIR System. Instrument to measure spectra in the mid-
    infrared spectral region (500 to 4000 cm -1). It contains 
    an infrared source, interferometer, sample gas containment cell, 
    infrared detector, and computer. The interferometer consists of a 
    beam splitter that divides the beam into two paths, one path a fixed 
    distance and the other a variable distance. The computer is equipped 
    with software to run the interferometer and store the raw digitized 
    signal from the detector (interferogram). The software performs the 
    mathematical conversion (the Fourier transform) of the interferogram 
    into a spectrum showing the frequency dependent sample absorbance. 
    All spectral data can be stored on computer media.
        3.1.2  Gas Cell. A gas containment cell that can be evacuated. 
    It contains the sample as the infrared beam passes from the 
    interferometer, through the sample, and to the detector. The gas 
    cell may have multi-pass mirrors depending on the required detection 
    limit(s) for the application.
        3.1.3  Sampling System. Equipment used to extract sample from 
    the test location and transport the gas to the FTIR analyzer. 
    Sampling system components include probe, heated line, heated non-
    reactive pump, gas distribution manifold and valves, flow 
    measurement devices and any sample conditioning systems.
        3.2  Reference CEM. An FTIR CEM, with sampling system, that can 
    be used for comparison measurements.
        3.3  Infrared Band (also Absorbance Band or Band). Collection of 
    lines arising from rotational transitions superimposed on a 
    vibrational transition. An infrared absorbance band is analyzed to 
    determine the analyte concentration.
        3.4  Sample Analysis. Interpreting infrared band shapes, 
    frequencies, and intensities to obtain sample component 
    concentrations. This is usually performed by a software routine 
    using a classical least squares (cls), partial least squares (pls), 
    or K-or P-matrix method.
        3.5  (Target) Analyte. A compound whose measurement is required, 
    usually to some established limit of detection and analytical 
    uncertainty.
        3.6  Interferant. A compound in the sample matrix whose infrared 
    spectrum overlaps at least part of an analyte spectrum complicating 
    the analyte measurement. The interferant may not prevent the analyte 
    measurement, but could increase the analytical uncertainty in the 
    measured
    
    [[Page 45373]]
    
    concentration. Reference spectra of interferants are used to 
    distinguish the interferant bands from the analyte bands. An 
    interferant for one analyte may not be an interferant for other 
    analytes.
        3.7  Reference Spectrum. Infrared spectra of an analyte, or 
    interferant, prepared under controlled, documented, and reproducible 
    laboratory conditions (see Section 4.6 of the FTIR Protocol). A 
    suitable library of reference spectra can be used to measure target 
    analytes in gas samples.
        3.8  Calibration Spectrum. Infrared spectrum of a compound 
    suitable for characterizing the FTIR instrument configuration 
    (Section 4.5 in the FTIR Protocol).
        3.9  One hundred percent line. A double beam transmittance 
    spectrum obtained by combining two successive background single beam 
    spectra. Ideally, this line is equal to 100 percent transmittance 
    (or zero absorbance) at every point in the spectrum. The zero 
    absorbance line is used to measure the RMS noise of the system.
        3.10  Background Deviation. Any deviation (from 100 percent) in 
    the one hundred percent line (or from zero absorbance). Deviations 
    greater than  5 percent in any analytical region are 
    unacceptable. Such deviations indicate a change in the instrument 
    throughput relative to the single-beam background.
        3.11  Batch Sampling. A gas cell is alternately filled and 
    evacuated. A Spectrum of each filled cell (one discreet sample) is 
    collected and saved.
        3.12  Continuous Sampling. Sample is continuously flowing 
    through a gas cell. Spectra of the flowing sample are collected at 
    regular intervals.
        3.13  Continuous Operation. In continuous operation an FTIR CEM 
    system, without user intervention, samples flue gas, records spectra 
    of samples, saves the spectra to a disk, analyzes the spectra for 
    the target analytes, and prints concentrations of target analytes to 
    a computer file. User intervention is permitted for initial set-up 
    of sampling system, initial calibrations, and periodic maintenance.
        3.14  Sampling Time. In batch sampling--the time required to 
    fill the cell with flue gas. In continuous sampling--the time 
    required to collect the infrared spectrum of the sample gas.
        3.15  PPM-Meters. Sample concentration expressed as the 
    concentration-path length product, ppm (molar) concentration 
    multiplied by the path length of the FTIR gas cell. Expressing 
    concentration in these units provides a way to directly compare 
    measurements made using systems with different optical 
    configurations. Another useful expression is (ppm-meters)/K, where K 
    is the absolute temperature of the sample in the gas cell.
        3.16  CEM Measurement Time Constant. The Time Constant (TC, 
    minutes for one cell volume to flow through the cell) determines the 
    minimum interval for complete removal of an analyte from the FTIR 
    cell. It depends on the sampling rate (Rs in Lpm), the 
    FTIR cell volume (Vcell in L) and the chemical and 
    physical properties of an analyte.
    [GRAPHIC] [TIFF OMITTED] TP27AU97.013
    
        For example, if the sample flow rate (through the FTIR cell) is 
    5 Lpm and the cell volume is 7 liters, then TC is equal to 1.4 
    minutes (0.71 cell volumes per minute). This performance 
    specification defines 5 * TC as the minimum interval between 
    independent samples.
        3.17  Independent Measurement. Two independent measurements are 
    spectra of two independent samples. Two independent samples are 
    separated by, at least 5 cell volumes. The interval between 
    independent measurements depends on the cell volume and the sample 
    flow rate (through the cell). There is no mixing of gas between two 
    independent samples. Alternatively, estimate the analyte residence 
    time empirically: (1) Fill cell to ambient pressure with a (known 
    analyte concentration) gas standard, (2) measure the spectrum of the 
    gas standard, (3) purge the cell with zero gas at the sampling rate 
    and collect a spectrum every minute until the analyte standard is no 
    longer detected spectroscopically. If the measured time corresponds 
    to less than 5 cell volumes, use 5 * TC as the minimum interval 
    between independent measurements. If the measured time is greater 
    than 5 * TC, then use this time as the minimum interval between 
    independent measurements.
        3.18  Test Condition. A period of sampling where all process, 
    and sampling conditions, and emissions remain constant and during 
    which a single sampling technique and a single analytical program 
    are used. One Run may include results for more than one test 
    condition. Constant emissions means that the composition of the 
    emissions remains approximately stable so that a single analytical 
    program is suitable for analyzing all of the sample spectra. A 
    greater than two-fold change in analyte or interferant 
    concentrations or the appearance of additional compounds in the 
    emissions, may constitute a new test condition and may require 
    modification of the analytical program.
        3.19  Run. A single Run consists of spectra (one spectrum each) 
    of at least 10 independent samples over a minimum of one hour. The 
    concentration results from the spectra can be averaged together to 
    give a run average for each analyte measured in the test run.
        4.0  Interferences. Several compounds, including water, carbon 
    monoxide, and carbon dioxide, are known interferences in the 
    infrared region in which the FTIR instrument operates. Follow the 
    procedures in the FTIR protocol for subtracting or otherwise dealing 
    with these and other interferences.
        5.0  Safety. The procedures required under this performance 
    specification may involve hazardous materials, operations, and 
    equipment. This performance specification does not purport to 
    address all of the safety problems associated with these procedures. 
    It is the responsibility of the user to establish appropriate safety 
    and health practices and determine the applicable regulatory 
    limitations prior to performing these procedures. The CEMS users 
    manual and materials recommended by this performance specification 
    should be consulted for specific precautions to be taken.
        6.0  Equipment and Supplies. 6.1  Installation of sampling 
    equipment should follow requirements of FTIR test Methods such as 
    references 1 and 3 and the EPA FTIR Protocol (reference 2). Select 
    test points where the gas stream composition is representative of 
    the process emissions. If comparing to a reference method, the probe 
    tips for the FTIR CEM and the RM should be positioned close together 
    using the same sample port if possible.
        6.2  FTIR Specifications. The FTIR CEM must be equipped with 
    reference spectra bracketing the range of path length-concentrations 
    (absorbance intensities) to be measured for each analyte. The 
    effective concentration range of the analyzer can be adjusted by 
    changing the path length of the gas cell or by diluting the sample. 
    The optical configuration of the FTIR system must be such that 
    maximum absorbance of any target analyte is no greater than 1.0 and 
    the minimum absorbance of any target analyte is at least 10 times 
    the RMSD noise in the analytical region. For example, if the 
    measured RMSD in an analytical region is equal to 10-3, 
    then the peak analyte absorbance is required to be at least 0.01. 
    Adequate measurement of all of the target analytes may require 
    changing path lengths during a run, conducting separate runs for 
    different analytes, diluting the sample, or using more than one gas 
    cell.
        6.3  Data Storage Requirements. The system must have sufficient 
    capacity to store all data collected in one week of routine 
    sampling. Data must be stored to a write-protected medium, such as 
    write-once-read-many (WORM) optical storage medium or to a password 
    protected remote storage location. A back-up copy of all data can be 
    temporarily saved to the computer hard drive. The following items 
    must be stored during testing.
        a. At least one sample interferogram per sampling Run or one 
    interferogram per hour, whichever is greater. This assumes that no 
    sampling or analytical conditions have changed during the run.
        b. All sample absorbance spectra (about 12 per hr, 288 per day).
        c. All background spectra and interferograms (variable, but 
    about 5 per day).
        d. All CTS spectra and interferograms (at least 2 each 24 hour 
    period).
        e. Documentation showing a record of resolution, path length, 
    apodization, sampling time, sampling conditions, and test conditions 
    for all sample, CTS, calibration, and background spectra.
        Using a resolution of 0.5 cm-1, with analytical range 
    of 3500 cm-1, assuming about 65 Kbytes per spectrum and 
    130 Kb per interferogram, the storage requirement is about 164 Mb 
    for one week of continuous sampling. Lower spectral resolution 
    requires less storage capacity. All of the above data must be stored 
    for at least two weeks. After two weeks, storage requirements 
    include: (1) All analytical results (calculated concentrations), (2) 
    at least 1 sample spectrum with corresponding background and sample 
    interferograms for each test
    
    [[Page 45374]]
    
    condition, (3) CTS and calibration spectra with at least one 
    interferogram for CTS and all interferograms for calibrations, (4) a 
    record of analytical input used to produce results, and (5) all 
    other documentation. These data must be stored according to the 
    requirements of the applicable regulation.
        7.0  Reagents and Standards. [Reserved]
        8.0  Sample Collection, Preservation, Storage, and Transport. 
    [Reserved]
        9.0  Quality Control. These procedures shall be used for 
    periodic quarterly or semiannual QA/QC checks on the operation of 
    the FTIR CEM. Some procedures test only the analytical program and 
    are not intended as a test of the sampling system.
        9.1  Audit Sample. This can serve as a check on both the 
    sampling system and the analytical program.
        9.1.1  Sample Requirements. The audit sample can be a mixture or 
    a single component. It must contain target analyte(s) at 
    approximately the expected flue gas concentration(s). If possible, 
    each mixture component concentration should be NIST traceable 
    (2 percent accuracy). If a cylinder mixture standard(s) 
    cannot be obtained, then, alternatively, a gas phase standard can be 
    generated from a condensed phase analyte sample. Audit sample 
    contents and concentrations are not revealed to the FTIR CEM 
    operator until after successful completion of procedures in 5.3.2.
        9.1.2  Test Procedure. An audit sample is obtained from the 
    Administrator. Spike the audit sample using the analyte spike 
    procedure in Section 11. The audit sample is measured directly by 
    the FTIR system (undiluted) and then spiked into the effluent at a 
    known dilution ratio. Measure a series of spiked and unspiked 
    samples using the same procedures as those used to analyze the stack 
    gas. Analyze the results using Sections 12.1 and 12.2. The measured 
    concentration of each analyte must be within 5 percent 
    of the expected concentration (plus the uncertainty), i.e., the 
    calculated correction factor must be within 0.93 and 1.07 for an 
    audit with an analyte uncertainty of 2 percent.
        9.2  Audit Spectra. Audit spectra can be used to test the 
    analytical program of the FTIR CEM, but provide no test of the 
    sampling system.
        9.2.1  Definition and Requirements. Audit spectra are absorbance 
    spectra that: (1) Have been well characterized, and (2) contain 
    absorbance bands of target analyte(s) and potential interferants at 
    intensities equivalent to what is expected in the source effluent. 
    Audit spectra are provided by the administrator without identifying 
    information. Methods of preparing Audit spectra include: (1) 
    Mathematically adding sample spectra or adding reference and 
    interferant spectra, (2) obtaining sample spectra of mixtures 
    prepared in the laboratory, or (3) they may be sample spectra 
    collected previously at a similar source. In the last case it must 
    be demonstrated that the analytical results are correct and 
    reproducible. A record associated with each Audit spectrum documents 
    its method of preparation. The documentation must be sufficient to 
    enable an independent analyst to reproduce the Audit spectra.
        9.2.2  Test Procedure. Audit spectra concentrations are measured 
    using the FTIR CEM analytical program. Analytical results must be 
    within 5 percent of the certified audit concentration 
    for each analyte (plus the uncertainty in the audit concentration). 
    If the condition is not met, demonstrate how the audit spectra are 
    unrepresentative of the sample spectra. If the audit spectra are 
    representative, modify the FTIR CEM analytical program until the 
    test requirement is met. Use the new analytical program in 
    subsequent FTIR CEM analyses of effluent samples.
        9.3  Submit Spectra For Independent Analysis. This procedure 
    tests only the analytical program and not the FTIR CEM sampling 
    system. The analyst can submit FTIR CEM spectra for independent 
    analysis by EPA. Requirements for submission include: (1) Three 
    representative absorbance spectra (and stored interferograms) for 
    each test period to be reviewed, (2) corresponding CTS spectra, (3) 
    corresponding background spectra and interferograms, (4) spectra of 
    associated spiked samples if applicable, and (5) analytical results 
    for these sample spectra. The analyst will also submit documentation 
    of process times and conditions, sampling conditions associated with 
    each spectrum, file names and sampling times, method of analysis and 
    reference spectra used, optical configuration of FTIR CEM including 
    cell path length and temperature, spectral resolution and 
    apodization used for every spectrum. Independent analysis can also 
    be performed on site in conjunction with the FTIR CEM sampling and 
    analysis. Sample spectra are stored on the independent analytical 
    system as they are collected by the FTIR CEM system. The FTIR CEM 
    and the independent analyses are then performed separately. The two 
    analyses will agree to within 20 percent for each 
    analyte using the procedure in Section 12.3. This assumes both 
    analytical routines have properly accounted for differences in 
    optical path length, resolution, and temperature between the sample 
    spectra and the reference spectra.
        10.0  Calibration/Standardization.
        10.1  Calibration Transfer Standards. For CTS requirements see 
    Section 4.5 of the FTIR Protocol. A well characterized absorbance 
    band in the CTS gas is used to measure the path length and line 
    resolution of the instrument. The CTS measurements made at the 
    beginning of every 24 hour period must agree to within 5 
    percent after correction for differences in pressure. Verify that 
    the frequency response of the instrument and CTS absorbance 
    intensity are correct by comparing to other CTS spectra or by 
    referring to the literature.
        10.2  Analyte Calibration. If EPA library reference spectra are 
    not available, use calibration standards to prepare reference 
    spectra according to Section 6 of the FTIR Protocol. A suitable set 
    of analyte reference data includes spectra of at least 2 independent 
    samples at each of at least 2 different concentrations. The 
    concentrations bracket a range that includes the expected analyte 
    absorbance intensities. The linear fit of the reference analyte band 
    areas must have a fractional calibration uncertainty (FCU in 
    Appendix F of the FTIR Protocol) of no greater than 10 percent. For 
    requirements of analyte standards refer to Section 4.6 of the FTIR 
    Protocol.
        10.3  System Calibration. The calibration standard is introduced 
    at a point on the sampling probe. The sampling system is purged with 
    the calibration standard to verify that the absorbance measured in 
    this way is equal to the absorbance in the analyte calibration. Note 
    that the system calibration gives no indication of the ability of 
    the sampling system to transport the target analyte(s) under the 
    test conditions.
        10.4  Analyte Spike. The target analyte(s) is spiked at the 
    outlet of the sampling probe, upstream of the particulate filter, 
    and combined with effluent at a ratio of about 1 part spike to 9 
    parts effluent. The measured absorbance of the spike is compared to 
    the expected absorbance of the spike plus the analyte concentration 
    already in the effluent. This measures sampling system bias, if any, 
    as distinguished from analyzer bias. It is important that spiked 
    sample pass through all of the sampling system components before 
    analysis.
        10.5  Signal-to-Noise Ratio (S/N). The measure of S/N in this 
    performance specification is the root-mean-square (RMS) noise level 
    as given in Appendix C of the FTIR Protocol. The RMS noise level of 
    a contiguous segment of a spectrum is defined as the RMS difference 
    (RMSD) between the n contiguous absorbance values (Ai) 
    which form the segment and the mean value (AM) of that 
    segment.
    [GRAPHIC] [TIFF OMITTED] TP27AU97.014
    
        A decrease in the S/N may indicate a loss in optical throughput, 
    or detector or interferometer malfunction.
        10.6  Background Deviation. The 100 percent baseline must be 
    between 95 and 105 percent transmittance (absorbance of 0.02 to 
    -0.02) in every analytical region. When background deviation exceeds 
    this range, a new background spectrum must be collected using 
    nitrogen or other zero gas.
        10.7  Detector Linearity. Measure the background and CTS at 
    three instrument aperture settings; one at the aperture setting to 
    be used in the testing, and one each at settings one half and twice 
    the test aperture setting. Compare the three CTS spectra. CTS band 
    areas should agree to within the uncertainty of the cylinder 
    standard. If test aperture is the maximum aperture, collect CTS 
    spectrum at maximum aperture, then close the aperture to reduce the 
    IR through-put by half. Collect a second background and CTS at the 
    smaller aperture setting and compare the spectra as above. Instead 
    of changing the aperture neutral density filters can be used to 
    attenuate the infrared beam. Set up the FTIR system as it will be 
    used in the test measurements. Collect a CTS spectrum. Use a neutral 
    density filter to attenuate the infrared beam (either immediately 
    after the source or the interferometer) to approximately \1/2\ its 
    original intensity. Collect a second CTS spectrum. Use another 
    filter to attenuate the infrared beam to approximately \1/4\ its 
    original intensity. Collect a third background
    
    [[Page 45375]]
    
    and CTS spectrum. Compare the CTS spectra as above. Another check on 
    linearity is to observe the single beam background in frequency 
    regions where the optical configuration is known to have a zero 
    response. Verify that the detector response is ``flat'' and equal to 
    zero in these regions. If detector response is not linear, decrease 
    aperture, or attenuate the infrared beam. Repeat the linearity check 
    until system passes the requirement.
        11.0  Analytical Procedure.
        11.1  Initial Certification. First, perform the evaluation 
    procedures in Section 6.0 of the FTIR Protocol. The performance of 
    an FTIR CEM can be certified upon installation using EPA Method 301 
    type validation (40 CFR, Part 63, Appendix A), or by comparison to a 
    reference Method if one exists for the target analyte(s). Details of 
    each procedure are given below. Validation testing is used for 
    initial certification upon installation of a new system. Subsequent 
    performance checks can be performed with more limited analyte 
    spiking. Performance of the analytical program is checked initially, 
    and periodically as required by EPA, by analyzing audit spectra or 
    audit gases.
        11.1.1  Validation. Use EPA Method 301 type sampling (reference 
    4, Section 5.3 of Method 301) to validate the FTIR CEM for measuring 
    the target analytes. The analyte spike procedure is as follows: (1) 
    A known concentration of analyte is mixed with a known concentration 
    of a non-reactive tracer gas, (2) the undiluted spike gas is sent 
    directly to the FTIR cell and a spectrum of this sample is 
    collected, (3) pre-heat the spiked gas to at least the sample line 
    temperature, (4) introduce spike gas at the back of the sample probe 
    upstream of the particulate filter, (5) spiked effluent is carried 
    through all sampling components downstream of the probe, (6) spike 
    at a ratio of roughly 1 part spike to 9 parts flue gas (or more 
    dilute), (7) the spike-to-flue gas ratio is estimated by comparing 
    the spike flow to the total sample flow, and (8) the spike ratio is 
    verified by comparing the tracer concentration in spiked flue gas to 
    the tracer concentration in undiluted spike gas. The analyte flue 
    gas concentration is unimportant as long as the spiked component can 
    be measured and the sample matrix (including interferences) is 
    similar to its composition under test conditions. Validation can be 
    performed using a single FTIR CEM analyzing sample spectra collected 
    sequentially. Since flue gas analyte (unspiked) concentrations can 
    vary, it is recommended that two separate sampling lines (and pumps) 
    are used; one line to carry unspiked flue gas and the other line to 
    carry spiked flue gas. Even with two sampling lines the variation in 
    unspiked concentration may be fast compared to the interval between 
    consecutive measurements. Alternatively, two FTIR CEMs can be 
    operated side-by-side, one measuring spiked sample, the other 
    unspiked sample. In this arrangement spiked and unspiked 
    measurements can be synchronized to minimize the affect of temporal 
    variation in the unspiked analyte concentration. In either sampling 
    arrangement, the interval between measured concentrations used in 
    the statistical analysis should be, at least, 5 cell volumes (5 * TC 
    in equation 1). A validation run consists of, at least, 24 
    independent analytical results, 12 spiked and 12 unspiked samples. 
    See Section 3.17 for definition of an ``independent'' analytical 
    result. The results are analyzed using Sections 12.1 and 12.2 to 
    determine if the measurements passed the validation requirements. 
    Several analytes can be spiked and measured in the same sampling 
    run, but a separate statistical analysis is performed for each 
    analyte. In lieu of 24 independent measurements, averaged results 
    can be used in the statistical analysis. In this procedure, a series 
    of consecutive spiked measurements are combined over a sampling 
    period to give a single average result. The related unspiked 
    measurements are averaged in the same way. The minimum 12 spiked and 
    12 unspiked result averages are obtained by averaging measurements 
    over subsequent sampling periods of equal duration. The averaged 
    results are grouped together and statistically analyzed using 
    Section 12.2.
        11.1.1.1  Validation with a Single Analyzer and Sampling Line. 
    If one sampling line is used, connect the sampling system components 
    and purge the entire sampling system and cell with at least 10 cell 
    volumes of sample gas. Begin sampling by collecting spectra of 2 
    independent unspiked samples. Introduce the spike gas into the back 
    of the probe, upstream of the particulate filter. Allow 10 cell 
    volumes of spiked flue gas to purge the cell and sampling system. 
    Collect spectra of 2 independent spiked samples. Turn off the spike 
    flow and allow 10 cell volumes of unspiked flue gas to purge the 
    FTIR cell and sampling system. Repeat this procedure 6 times until 
    the 24 samples are collected. Spiked and unspiked samples can also 
    be measured in groups of 4 instead of in pairs. Analyze the results 
    using Sections 12.1 and 12.2. If the statistical analysis passes the 
    validation criteria, then the validation is completed. If the 
    results do not pass the validation, the cause may be that temporal 
    variations in the analyte sample gas concentration are fast relative 
    to the interval between measurements. The difficulty may be avoided 
    by: (1) Averaging the measurements over long sampling periods and 
    using the averaged results in the statistical analysis, (2) 
    modifying the sampling system to reduce TC by, for example, using a 
    smaller volume cell or increasing the sample flow rate, (3) using 
    two sample lines (4) use two analyzers to perform synchronized 
    measurements. This performance specification permits modifications 
    in the sampling system to minimize TC if the other requirements of 
    the validation sampling procedure are met.
        11.1.1.2  Validation With a Single Analyzer and Two Sampling 
    Lines. An alternative sampling procedure uses two separate sample 
    lines, one carrying spiked flue gas, the other carrying unspiked 
    gas. A valve in the gas distribution manifold allows the operator to 
    choose either sample. A short heated line connects the FTIR cell to 
    the 3-way valve in the manifold. Both sampling lines are 
    continuously purged. Each sample line has a rotameter and a bypass 
    vent line after the rotameter, immediately upstream of the valve, so 
    that the spike and unspiked sample flows can each be continuously 
    monitored. Begin sampling by collecting spectra of 2 independent 
    unspiked samples. Turn the sampling valve to close off the unspiked 
    gas flow and allow the spiked flue gas to enter the FTIR cell. 
    Isolate and evacuate the cell and fill with the spiked sample to 
    ambient pressure. (While the evacuated cell is filling, prevent air 
    leaks into the cell by making sure that the spike sample rotameter 
    always indicates that a portion of the flow is directed out the by-
    pass vent.) Open the cell outlet valve to allow spiked sample to 
    continuously flow through the cell. Measure spectra of 2 independent 
    spiked samples. Repeat this procedure until at least 24 samples are 
    collected.
        11.1.1.3  Synchronized Measurements With Two Analyzers. Use two 
    FTIR analyzers, each with its own cell, to perform synchronized 
    spiked and unspiked measurements. If possible, use a similar optical 
    configuration for both systems. The optical configurations are 
    compared by measuring the same CTS gas with both analyzers. Each 
    FTIR system uses its own sampling system including a separate 
    sampling probe and sampling line. A common gas distribution manifold 
    can be used if the samples are never mixed. One sampling system and 
    analyzer measures spiked effluent. The other sampling system and 
    analyzer measures unspiked flue gas. The two systems are 
    synchronized so that so that each measures spectra at approximately 
    the same times. The sample flow rates are also synchronized so that 
    both sampling rates are approximately the same (TC1 TC2 
    in equation 1). Start both systems at the same time. Collect spectra 
    of at least 12 independent samples with each (spiked and unspiked) 
    system to obtain the minimum 24 measurements. Analyze the analytical 
    results using Sections 12.1 and 12.2. Run averages can be used in 
    the statistical analysis instead of individual measurements.
        11.1.1.4  Compare to a Reference Method (RM). Obtain EPA 
    approval that the method qualifies as an RM for the analyte(s) and 
    the source to be tested. Follow the published procedures for the RM 
    in preparing and setting up equipment and sampling system, 
    performing measurements, and reporting results. Since FTIR CEMS have 
    multicomponent capability, it is possible to perform more than one 
    RM simultaneously, one for each target analyte. Conduct at least 9 
    runs where the FTIR CEM and the RM are sampling simultaneously. Each 
    Run is at least 30 minutes long and consists of spectra of at least 
    5 independent FTIR CEM samples and the corresponding RM 
    measurements. If more than 9 runs are conducted, the analyst may 
    eliminate up to 3 runs from the analysis if at least 9 runs are 
    used.
        11.1.1.4.1  RMs Using Integrated Sampling. Perform the RM and 
    FTIR CEM sampling simultaneously. The FTIR CEM can measure spectra 
    as frequently as the analyst chooses (and should obtain measurements 
    as frequently as possible) provided that the measurements include 
    spectra of at least 5 independent measurements every 30 minutes. 
    Concentration results from all of the FTIR CEM spectra within a run 
    may be averaged for use in the statistical comparison
    
    [[Page 45376]]
    
    even if all of the measurements are not independent. When averaging 
    the FTIR CEM concentrations within a run, it is permitted to exclude 
    some measurements from the average provided the minimum of 5 
    independent measurements every 30 minutes are included: The Run 
    average of the FTIR CEM measurements depends on both the sample flow 
    rate and the measurement frequency (MF). The run average of the RM 
    using the integrated sampling method depends primarily on its 
    sampling rate. If the target analyte concentration fluctuates 
    significantly, the contribution to the run average of a large 
    fluctuation depends on the sampling rate and measurement frequency, 
    and on the duration and magnitude of the fluctuation. It is, 
    therefore, important to carefully select the sampling rate for both 
    the FTIR CEM and the RM and the measurement frequency for the FTIR 
    CEM. The minimum of 9 run averages can be compared according to the 
    relative accuracy test procedure in Performance Specification 2 for 
    SO2 and NOX CEMs (40 CFR part 60, Appendix B).
        11.1.1.4.2  RMs Using a Grab Sampling Technique. Synchronize the 
    RM and FTIR CEM measurements as closely as possible. For a grab 
    sampling RM record the volume collected and the exact sampling 
    period for each sample. Synchronize the FTIR CEM so that the FTIR 
    measures a spectrum of a similar cell volume at the same time as the 
    RM grab sample was collected. Measure at least 5 independent samples 
    with both the FTIR CEM and the RM for each of the minimum 9 Runs. 
    Compare the Run concentration averages by using the relative 
    accuracy analysis procedure in 40 CFR part 60, Appendix B.
        11.1.1.4.3  Continuous Emission Monitors (CEMs) as RMs. If the 
    RM is a CEM, synchronize the sampling flow rates of the RM and the 
    FTIR CEM. Each run is at least 1-hour long and consists of at least 
    10 FTIR CEM measurements and the corresponding 10 RM measurements 
    (or averages). For the statistical comparison use the relative 
    accuracy analysis procedure in 40 CFR part 60, Appendix B. If the RM 
    time constant is < \1/2\="" the="" ftir="" cem="" time="" constant,="" brief="" fluctuations="" in="" analyte="" concentrations="" which="" are="" not="" adequately="" measured="" with="" the="" slower="" ftir="" cem="" time="" constant="" can="" be="" excluded="" from="" the="" run="" average="" along="" with="" the="" corresponding="" rm="" measurements.="" however,="" the="" ftir="" cem="" run="" average="" must="" still="" include="" at="" least="" 10="" measurements="" over="" a="" 1-hr="" period.="" 12.0="" calculations="" and="" data="" analysis.="" 12.1="" spike="" dilution="" ratio,="" expected="" concentration.="" the="" method="" 301="" bias="" is="" calculated="" as="" follows.="" b="">m--Mm--CS
    
    Where
    B=Bias at the spike level
    Sm=Mean of the observed spiked sample concentrations
    Mm=Mean of the observed unspiked sample concentrations
    CS=Expected value of the spiked concentration. The CS is determined 
    by comparing the SF6 tracer concentration in undiluted 
    spike gas to the SF6 tracer concentrations in the spiked 
    samples;
    [GRAPHIC] [TIFF OMITTED] TP27AU97.015
    
        The expected concentration (CS) is the measured concentration of 
    the analyte in undiluted spike gas divided by the dilution factor
    [GRAPHIC] [TIFF OMITTED] TP27AU97.016
    
    where
    [anal]dir=The analyte concentration in undiluted spike 
    gas measured directly by filling the FTIR cell with the spike gas. 
    If the bias is statistically significant (Section 12.2), Method 301 
    requires that a correction factor, CF, be multiplied by the 
    analytical results, and that 0.7  CF  1.3.
    [GRAPHIC] [TIFF OMITTED] TP27AU97.017
    
    12.2  Statistical Analysis of Validation Measurements. Arrange the 
    independent measurements (or measurement averages) as in Table 1. 
    More than 12 pairs of measurements can be analyzed. The statistical 
    analysis follows EPA Method 301, Section 6.3. Section 12.1 of this 
    performance specification shows the calculations for the bias, 
    expected spike concentration, and correction factor. This Sections 
    shows the determination of the statistical significance of the bias. 
    Determine the statistical significance of the bias at the 95 percent 
    confidence level by calculating the t-value for the set of 
    measurements. First, calculate the differences, di, for 
    each pair of spiked and each pair of unspiked measurements. Then 
    calculate the standard deviation of the spiked pairs of 
    measurements.
    [GRAPHIC] [TIFF OMITTED] TP27AU97.018
    
    Where
    di=The differences between pairs of spiked measurements.
    SDs=The standard deviation in the di values.
    n=The number of spiked pairs, 2n=12 for the minimum of 12 spiked and 
    12 unspiked measurements.
        Calculate the relative standard deviation, RSD, using 
    SDs and the mean of the spiked concentrations, 
    Sm. The RSD must be  50%.
    [GRAPHIC] [TIFF OMITTED] TP27AU97.019
    
        Repeat the calculations in equations 7 and 8 to determine 
    SDu and RSD, respectively, for the unspiked samples.
        Calculate the standard deviation of the mean using 
    SDs and SDu from equation 7.
    [GRAPHIC] [TIFF OMITTED] TP27AU97.020
    
        The t-statistic is calculated as follows to test the bias for 
    statistical significance;
    [GRAPHIC] [TIFF OMITTED] TP27AU97.021
    
    Where the bias, B, and the correction factor, CF, are given in 
    Section 12.1.
    
        For 11 degrees of freedom, and a one-tailed distribution, Method 
    301 requires that t  2.201. If the t-statistic indicates 
    the bias is statistically significant, then analytical measurements 
    must be multiplied by the correction factor. There is no limitation 
    on the number of measurements, but there must be at least 12 
    independent spiked and 12 independent unspiked measurements. Refer 
    to the t-distribution (Table 2) at the 95 percent confidence level 
    and appropriate degrees of freedom for the critical t-value.
    13.0-15.0  [Reserved]
    16.0  References.
        1. Method 318, 40 CFR Part 63, Appendix A (Draft), ``Measurement 
    of Gaseous Formaldehyde, Phenol and Methanol Emissions by FTIR 
    Spectroscopy,'' EPA Contract No. 68D20163, Work Assignment 2-18, 
    February, 1995.
        2. ``EPA Protocol for the Use of Extractive Fourier Transform 
    Infrared (FTIR) Spectrometry in Analyses of Gaseous Emissions from 
    Stationary Industrial Sources,'' February, 1995.
        3. ``Measurement of Gaseous Organic and Inorganic Emissions by 
    Extractive FTIR Spectroscopy,'' EPA Contract No. 68-D2-0165, Work 
    Assignment 3-08.
        4. ``Method 301--Field Validation of Pollutant Measurement 
    Methods from Various Waste Media,'' 40 Part CFR 63, Appendix A.
        17.0  Tables, Diagrams, Flowcharts, and Validation Data.
    
                                           Table 1.--Arrangement of Validation Measurements For Statistical Analysis.                                       
    --------------------------------------------------------------------------------------------------------------------------------------------------------
          Measurement (or average)            Time           Spiked (ppm)                di spiked              Unspiked (ppm)             di  unspiked     
    --------------------------------------------------------------------------------------------------------------------------------------------------------
    1...................................  ...........  S1                        ........................  U1                        .......................
    2...................................  ...........  S2                        S2-S1                     U2                        U2-U1                  
    3...................................  ...........  S3                        ........................  U3                        .......................
    4...................................  ...........  S4                        S4-S3                     U4                        U4-U3                  
    
    [[Page 45377]]
    
                                                                                                                                                            
    5...................................  ...........  S5                        ........................  U5                        .......................
    6...................................  ...........  S6                        S6-S5                     U6                        U6-U5                  
    7...................................  ...........  S7                        ........................  U7                        .......................
    8...................................  ...........  S8                        S8-S7                     U8                        U8-U7                  
    9...................................  ...........  S9                        ........................  U9                        .......................
    10..................................  ...........  S10                       S10-S9                    U10                       U10-U9                 
    11..................................  ...........  S11                       ........................  U11                       .......................
    12..................................  ...........  S12                       S12-S11                   U12                       U12-U11                
    Average->...........................  ...........  Sm                        ........................  Mm                        .......................
    --------------------------------------------------------------------------------------------------------------------------------------------------------
    
    
                                                   Table 2.--t-Values                                               
    ----------------------------------------------------------------------------------------------------------------
        n-1a         t-value         n-1a         t-value         n-1a         t-value         n-1a        t-value  
    ----------------------------------------------------------------------------------------------------------------
    11..........         2.201             17         2.110             23         2.069             29        2.045
    12..........         2.179             18         2.101             24         2.064             30        2.042
    13..........         2.160             19         2.093             25         2.060             40        2.021
    14..........         2.145             20         2.086             26         2.056             60        2.000
    15..........         2.131             21         2.080             27         2.052            120        1.980
    16..........         2.120             22         2.074             28         2.048                      1.960 
    ----------------------------------------------------------------------------------------------------------------
    (a) n is the number of independent pairs of measurements (a pair consists of one spiked and its corresponding   
      unspiked measurement). Either discreet (independent) measurements in a single run, or run averages can be     
      used.                                                                                                         
    
    [FR Doc. 97-22508 Filed 8-26-97; 8:45 am]
    BILLING CODE 6560-50-P
    
    
    

Document Information

Published:
08/27/1997
Department:
Environmental Protection Agency
Entry Type:
Proposed Rule
Action:
Proposed rule: Amendments.
Document Number:
97-22508
Dates:
Comments. Comments must be received on or before October 27, 1997 unless a hearing is requested by September 8, 1997. If a hearing is requested, written comments must be received by October 14, 1997.
Pages:
45369-45377 (9 pages)
Docket Numbers:
FRL-5880-8
RINs:
2060-AG21: Amendments for Testing and Monitoring Provisions to Part 60, Part 61, and Part 63
RIN Links:
https://www.federalregister.gov/regulations/2060-AG21/amendments-for-testing-and-monitoring-provisions-to-part-60-part-61-and-part-63
PDF File:
97-22508.pdf
CFR: (3)
40 CFR 60
40 CFR 61
40 CFR 63