98-20700. Federal Motor Vehicle Safety Standards; Head Impact Protection  

  • [Federal Register Volume 63, Number 149 (Tuesday, August 4, 1998)]
    [Rules and Regulations]
    [Pages 41451-41466]
    From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
    [FR Doc No: 98-20700]
    
    
    =======================================================================
    -----------------------------------------------------------------------
    
    DEPARTMENT OF TRANSPORTATION
    
    National Highway Traffic Safety Administration
    
    49 CFR Parts 571
    
    [Docket No. NHTSA-98-3847]
    RIN 2127-AG07
    
    
    Federal Motor Vehicle Safety Standards; Head Impact Protection
    
    AGENCY: National Highway Traffic Safety Administration (NHTSA), DOT.
    
    ACTION: Final rule.
    
    -----------------------------------------------------------------------
    
    SUMMARY: This final rule amends the upper interior impact requirements 
    of Standard 201, Occupant Protection in Interior Impact, to permit, but 
    not require, the installation of dynamically deploying upper interior 
    head protection systems currently being developed by some vehicle 
    manufacturers to provide added head protection in lateral crashes. 
    Compliance with those requirements is tested at specified points called 
    ``target points.'' Since compliance is often not practicable at target 
    points located near the places where these dynamic systems are stored 
    before they are deployed, vehicles equipped with the dynamic systems 
    will be allowed to meet slightly reduced requirements at those points. 
    However, these vehicles will also be required to meet new requirements 
    to ensure that these dynamic systems enhance safety. This final rule 
    adds procedures and performance requirements for testing the deployment 
    of these systems and their protective capability through a combination 
    of in-vehicle tests and a full scale vehicle crash test. In a separate 
    final rule being published today, the agency is establishing 
    specifications and qualification requirements for a newly-developed 
    anthropomorphic test dummy to be used in determining compliance with 
    the dynamic crash test requirements.
    
    DATES: Effective Date: The amendments made in this rule are effective 
    September 1, 1998.
        Petition Date: Any petitions for reconsideration must be received 
    by NHTSA no later than September 18, 1998.
    
    ADDRESSES: Any petitions for reconsideration should refer to the docket 
    and notice number of this notice and be submitted to: Administrator, 
    National Highway Traffic Safety Administration, 400 Seventh Street, SW, 
    Washington, DC 20590.
    
    FOR FURTHER INFORMATION CONTACT: The following persons at the National 
    Highway Traffic Safety Administration, 400 Seventh Street, SW, 
    Washington, DC 20590:
    
    For non-legal issues: Dr. William Fan, Office of Crashworthiness 
    Standards, NPS-11, telephone (202) 366-4922, facsimile (202) 366-4329, 
    electronic mail bfan@nhtsa.dot.gov''
    For legal issues: Otto Matheke, Office of the Chief Counsel, NCC-20, 
    telephone (202) 366-5253, facsimile (202) 366-3820, electronic mail 
    omatheke@nhtsa.dot.gov''.
    
    SUPPLEMENTARY INFORMATION:
    
    Table of Contents
    
    I.  Background
        A.  August 1995 Final Rule on Upper Interior Impact Protection
        B.  Petitions for Reconsideration
        C.  March 1996 ANPRM on Dynamically Deployed Upper Interior Head 
    Protection Systems
        D.  August 1997 NPRM on Dynamically Deployed Upper Interior Head 
    Protection Systems
        E.  Comments Submitted in Response to the NPRM
    II.  Final Rule
        A.  Deletion of the Proposed In-vehicle Test
        B.  Vehicle-to-Pole Test
        C.  Rigid Pole
        D.  SID/HIII Dummy
        E.  Rear Seat Dummy
        F.  Impact Speed and Conditions
        G.  Target Locations
        H.  Safety Concerns
        I.  Other Issues
        J.  Dummy Seating Position
        K.  Selection of Options
        L.  Effective Date
    III. Rulemaking Analyses and Notices
        A.  Executive Order 12866 (Federal Regulation) and DOT 
    Regulatory Policies and Procedures
        B.  Regulatory Flexibility Act
        C.  National Environmental Policy Act
        D.  Executive Order 12612 (Federalism) and Unfunded Mandates Act
        E.  Civil Justice Reform
    
    Regulatory Text
    
    I. Background
    
    A. August 1995 Final Rule on Upper Interior Impact Protection
    
        The August 1995 final rule issued by the National Highway Traffic 
    Safety Administration (NHTSA) amended Standard 201 to require passenger 
    cars, and trucks, buses, and multipurpose passenger vehicles 
    (collectively, passenger cars and LTVs) with a gross vehicle weight 
    rating (GVWR) of 4,536 kilograms (10,000 pounds) or less, to provide 
    protection when an occupant's head strikes upper interior components, 
    including pillars, side rails, headers, and the roof, during a crash. 
    This final rule, which requires compliance pursuant to a phase-in 
    schedule beginning on September 1, 1998, significantly expands the 
    scope of Standard 201. Previously, the standard applied mainly to the 
    portion of the vehicle interior in front of the front seat occupants, 
    i.e., the instrument panel. The amendments added procedures and 
    performance requirements for a new in-vehicle component test.
    
    B. Petitions for Reconsideration
    
        The agency received nine timely petitions for reconsideration of 
    the final rule. The issues raised by the petitions can be divided into 
    five categories: (1) Application of the new requirements to dynamically 
    deployed upper interior head protection systems, (2) influence of 
    systems variables, (3) lead time and phase-in, (4) exclusion of certain 
    vehicles, and (5) test procedure.
        With respect to the last four categories of issues raised by the 
    petitions, NHTSA responded by issuing amendments to the August 18, 1995 
    final rule in a notice dated April 8, 1997 (62 FR 16718). In the April 
    8, 1997 notice, NHTSA modified the final rule to exclude certain 
    vehicles from the upper interior impact requirements of Standard 201, 
    allowed carry-forward credits, changed the phase-in requirements by 
    providing manufacturers with the option of complying with an additional 
    alternative schedule for meeting the upper interior impact requirements 
    of the standard and amended other sections of the standard to address 
    concerns about test procedures.
        Since the first category of issues, those relating to dynamically 
    deployed upper interior head protection systems, was outside the scope 
    of the rulemaking that led to the August 18, 1995 rule, the agency 
    announced that it was treating the requests relating to these issues as 
    petitions for rulemaking, and was granting those petitions.
    
    C. March 1996 ANPRM on Dynamically Deployed Upper Interior Head 
    Protection Systems
    
        On March 7, 1996, NHTSA published an advance notice of proposed 
    rulemaking (ANPRM) to assist the
    
    [[Page 41452]]
    
    agency in evaluating the issues raised by dynamically deployed upper 
    interior head protection systems (61 FR 9136). In the ANPRM, the agency 
    noted that vehicles with inflatable frontal automatic protection 
    systems (i.e., air bags) meeting S5.1 of Standard No. 208, ``Occupant 
    Crash Protection'' need only meet the performance requirements of 
    Standard 201 when impacted at a relative velocity of 19 kilometers per 
    hour (km/h) (12 mph) rather than the 24 km/h (15 mph) requirement 
    imposed on vehicles not meeting S5.1 of Standard 208. This exception to 
    the 24 km/h (15 mph) requirement is premised on the fact that the 
    padding thickness required for surfaces to meet higher impact 
    requirements interferes with the deployment of airbags. NHTSA allowed 
    this exception based on the agency's belief that the tests contained in 
    Standard 208 for dynamic systems provided adequate assurance that these 
    systems perform well enough to protect occupants in the event of a 
    crash at a speed higher than 19 km/h (12 mph).
        At the time of the ANPRM, there was no comparable way of 
    accommodating the dynamically deployed upper interior head impact 
    systems since neither Standard 208 nor any other Standard contained 
    performance requirements or test procedures for assessing the 
    performance of those systems. Without such requirements or procedures, 
    there was no readily available way of providing adequate assurance that 
    the systems would yield sufficient safety benefits to justify reducing 
    the upper interior impact requirements for vehicles with dynamically 
    deployed upper interior protection systems.
        The ANPRM suggested that performance requirements and test 
    procedures be developed for those systems. Given the differences in 
    design and performance between two of the best known types of such 
    systems, dynamically deployed padding and dynamically deployed 
    inflatable devices, the agency suggested further that those two types 
    of systems be subjected to different tests. In the case of dynamically 
    deployed padding, the agency suggested that existing targets specified 
    in the final rule protected by the dynamic system be impacted at 19 km/
    h (12 mph) prior to the deployment of the padding and then be impacted 
    at 32 km/h (20 mph) with the padding deployed. This test would 
    accommodate the limitations of dynamic padding systems in their 
    undeployed state while providing assurance that deployed padding 
    provides additional protection to occupants. In the case of inflatable 
    devices, the agency discussed the possibility that it might propose 
    subjecting vehicles equipped with these systems to 19 km/h (12 mph) 
    headform impacts at all points that would be covered by the devices 
    when inflated. These tests would be conducted with the devices in their 
    undeployed state. The performance of the devices as deployed would be 
    tested in a side impact test into a fixed rigid pole at 30 km/h (18.6 
    miles per hour) or a side impact with a moving deformable barrier at 50 
    km/h (31 miles per hour). The ANPRM also requested responses to 17 
    questions relating to the design, performance, evaluation and testing 
    of dynamically deployed upper interior head protection systems.
        The agency received a total of ten comments on the ANPRM. Five 
    automobile manufacturers (Ford, Volvo, BMW, VW, and Mercedes), one 
    restraint system suppler (Autoliv), two safety organizations (Insurance 
    Institute for Highway Safety (IIHS), and Advocates for Highway and Auto 
    Safety (AHAS)), and one manufacturers' association (American Automobile 
    Manufacturers Association (AAMA)) and a trade group (Automotive 
    Occupant Restraint Council (AORC)), submitted comments in response to 
    the ANPRM.
    
    D. August 1997 NPRM on Dynamically Deployed Upper Interior Head 
    Protection Systems
    
        NHTSA's analysis of the comments received in response to the ANPRM 
    is contained in a Notice of Proposed Rulemaking (NPRM) published in the 
    Federal Register on August 26, 1997. (62 FR 45202). The NPRM proposed 
    adding two test procedures to Standard 201 to accommodate development 
    of dynamically deployed upper interior head protection systems. Under 
    the agency's proposal, manufacturers would have the option of 
    demonstrating compliance with Standard 201 in accordance with the 
    requirements and procedures specified in the August 1995 final rule 
    tests or with one of the two new test procedures. The first option, 
    referred to as Option 1, specified performing free-motion headform 
    (FMH) impacts at 24 km/h (15 mph) at all test points and target angles 
    specified in the August 1995 final rule. The second and third options, 
    referred to as options 2 and 3, respectively, proposed employing FMH 
    testing at a reduced impact speed at those points located directly over 
    a stowed dynamic system and its inflation and attachment hardware. To 
    ensure that these systems offer safety benefits in the deployed mode 
    commensurate with the reduction in protection provided in the 
    undeployed mode as a result of the lower impact speed, options 2 and 3 
    required testing of the deployed system at impact speeds above 24 km/h 
    (15 mph).
        As proposed in the NPRM, Option 2 would use the existing FMH to 
    simulate an occupant's head striking the interior of the vehicle in a 
    crash. In this test, the headform would be propelled into specified 
    targets within the vehicle at differing impact speeds. For those points 
    that are not directly over a dynamic system or its attachment or 
    inflation hardware, the specified impact speed would be 24 km/h (15 
    mph). For points directly over an undeployed dynamic system (including 
    attachment points and inflation mechanisms), the headform would be 
    propelled at the target at 19 km/h (12 mph) with the system in the 
    undeployed mode and 29 km/h (18 mph) with the system deployed. In order 
    to test the deployment of the system, the triggering mechanism would be 
    tested through use of the lateral crash test contained in S6.12 of 
    Standard 214. The proposal also set forth that once triggered, the 
    system would have to reach full deployment in 30 milliseconds (ms) or 
    less.
        The other proposed optional test procedure, Option 3, employed a 
    full scale side impact at 29 km/h (18 mph) into a fixed pole. Under 
    this procedure, those target points likely to be struck in a crash, 
    notwithstanding the deployment of the dynamically deployed device, 
    would be tested at a higher speed than target points likely to be 
    shielded by the deployed device. More specifically, any test points or 
    targets inside the vehicle that do not intersect with a line oriented 
    along any of the approach angles described in S8.13.4 and passing 
    through an undeployed dynamic system or any of its components 
    (excluding trim) would be subjected to a 24 km/h (15 mph) FMH impact at 
    the target angles and conditions now contained in the Standard. For 
    those targets that intersect with a line oriented along any of the 
    approach angles described in S8.13.4 and passing through an undeployed 
    dynamic system or any of its components (excluding trim), FMH impacts 
    at a speed of 19 km/h (12 mph) would be employed to test the system in 
    its undeployed condition.
        The agency noted that, under Option 3, manufacturers choosing to 
    employ dynamic systems whose components are not stored in roof rails or 
    other areas covered by Standard 201 would be required to meet the 24 
    km/h (15 mph) FMH impact test even though such a system, in its 
    deployed state, may provide head protection against impact with the 
    target points specified in this
    
    [[Page 41453]]
    
    standard. The NPRM requested comments on whether a dynamic system 
    which, when deployed and observed in a side view, completely covers the 
    95th percentile eyellipse as defined in SAE Recommended Practice J941--
    Motor Vehicle Driver's Eye Locations (June 92), would provide 
    protection against impacts with targets on the A-pillar, B-pillar and 
    side rails.
        As proposed, Option 3 would test the effectiveness of the dynamic 
    system in the deployed mode, in a full scale 29 km/h (18 mph) side 
    impact into a 254 millimeter (10 inch) diameter fixed rigid pole. The 
    point of impact would be aligned with the center of gravity of the head 
    of a dummy seated in a designated front outboard seating position on 
    the struck side. In this proposed test, the seat would be positioned as 
    directed in S6.3 and S6.4 of Standard 214 and the dummy located as 
    directed in S7 of Standard 214. However, the agency recognized that the 
    use of this seating procedure might result in interference between the 
    head of the test dummy and B-pillar when used in certain vehicles. 
    Therefore, NHTSA proposed modifications to the seating procedure and 
    asked for comments regarding seat adjustment. The NPRM also indicated 
    that NHTSA was continuing to consider the use of a second dummy in the 
    rear outboard seating position of the struck side.
        Option 3 specified that the vehicle would strike the rigid pole at 
    an angle of 90 degrees. The agency solicited comments on whether other 
    impact angles would result in a test procedure better suited for 
    evaluating performance in a crash and if the use of these other angles 
    would present technical challenges in testing. The proposal indicated 
    that initial pole-to-vehicle contact must occur within an area bounded 
    by two transverse vertical planes located 38 mm (1.5 inches) forward 
    and aft of the impact reference line. The agency requested comments on 
    the degree of difficulty of achieving an impact within this range.
        The agency also proposed a new test dummy for use in the Option 3 
    test. This test dummy is a SID dummy modified to accept the Hybrid III 
    head and neck. The proposed performance requirements for Option 3 were 
    identical to those found in the first and second options; the HIC(d) 
    value would not exceed 1000.
        NHTSA also solicited comments regarding potential safety concerns 
    related to any possible effects of dynamically deployed upper interior 
    head protection systems on out-of-position occupants.
    
    E. Comments Submitted in Response to the NPRM
    
        All commenters generally supported the agency's proposal, with a 
    few exceptions on some issues. The commenters consisted of seven 
    automobile manufacturers (BMW, Land Rover, Volvo, Nissan, Volkswagen, 
    Mercedes and Toyota), two manufacturers' associations, the American 
    Automobile Manufacturers' Association (AAMA) and the Association of 
    International Automobile Manufacturers (AIAM), two safety groups, the 
    Insurance Institute for Highway Safety (IIHS) and Advocates for Highway 
    and Auto Safety (Advocates), one supplier (Autoliv) and one trade 
    group, the Automotive Occupant Restraints Council (AORC).
        BMW made several comments on target locations, rear seat 
    protection, test repeatability, out-of-position occupants, and other 
    subjects. BMW concurred with the proposal that those targets directly 
    over the stowed dynamic system should be tested at 19 km/h (12 mph) 
    with the system undeployed. However, BMW commented that the definition 
    of target exclusion specified in S6.1(c) and S6.2(c) is too narrow. In 
    BMW's view, a 50 mm (2 inch) transition area between the 24 km/h (15 
    mph) padding and the 19 km/h (12 mph) padding is needed for design 
    purposes. The company indicated that its dynamic head protection 
    system, the ITS (Inflatable Tubular System) deploys mainly out of the 
    roof liner joint along the side rail and not directly through the area 
    that covers it. Therefore, BMW submitted that a transition zone around 
    the area where the system is stowed is necessary to ensure that 
    countermeasures that would otherwise be required to meet the 24 km/h 
    (15 mph) FMH impact tests would not interfere with ITS deployment. BMW 
    also commented that all target locations covered or protected by the 
    deployed system should be tested at 19 km/h (12 mph) when the system is 
    in its undeployed mode and that the SAE 95th percentile eyellipse 
    should not be used as a sole criterion to determine target exemption.
        BMW enclosed a recent safety benefit study by K. Digges and 
    Associates with its comments as evidence of the effectiveness of its 
    system in protecting rear seat occupants. This study projected that for 
    the rear seat occupants, the number of AIS 3-5 head/face injuries 
    prevented by the ITS would be much larger than the baseline number of 
    AIS 3-5 injuries resulting from head-to-side rail contacts. In view of 
    this, BMW argued that target locations ``protected'' or ``covered'' by 
    the ITS, notably the SR3 target location, should be subject to the 19 
    km/h (12 mph) FMH impact, instead of a 24 km/h (15 mph) FMH impact test 
    as proposed in the NPRM under Option 3. BMW also commented that there 
    is no justification for the inclusion of a rear seat dummy in the pole 
    impact test.
        BMW, which has used pole tests in the development of the ITS, 
    concurred with the proposed specifications for the pole test outlined 
    in Option 3. Based on its own test data, BMW concluded that the NPRM 
    proposed test location tolerance limit of 38 mm (1.5 
    inches) is reasonable. The company also noted that the ITS system is 
    tailored to protect the head of an adult occupant in the front seat and 
    is, therefore, relatively small and deploys with minimal energy. In 
    view of this, it would not present a threat to vehicle occupants. 
    Lastly, BMW recommended that the final rule be published by March 1998 
    and become effective 30 days after its publication.
        Land Rover submitted comments relating to the size of its vehicles. 
    The company indicated that its multipurpose passenger vehicles are all 
    over the GVWR limit of 2,722 kilograms (6,000 pounds) applicable to 
    LTVs under Standard 214 and therefore do not need to pass the side 
    impact requirements of that standard. Land Rover submitted that it is 
    not reasonable for the company to conduct a Standard 214 side impact 
    test in order to certify the 30 ms full-deployment requirement 
    specified in the Option 2 test. Land Rover requested that the Standard 
    301 lateral moving barrier crash test be an optional test to certify 
    the 30 ms full-deployment requirement, if needed.
        AAMA commented on the proposed test procedures, including Option 1, 
    2, and 3 tests. In regard to Option 1 test procedures, AAMA requested 
    clarification in the wording in S6.1(a). AAMA believed that it was not 
    clear from the proposal whether a vehicle not equipped with a dynamic 
    system or one whose system components are not stored in the A-pillar, 
    side rails or areas otherwise covered by Standard 201 must comply with 
    the 24 km/h (15 mph) FMH impact requirement.
        AAMA also commented on a number of issues concerning the proposed 
    Option 2 test. The comments noted that AAMA member companies did not 
    understand what types of dynamic systems would be tested under this 
    proposed test and that to AAMA's knowledge, no system existed that 
    would use the proposed Option 2 test procedure. The AAMA comments also 
    took issue with the approach angles
    
    [[Page 41454]]
    
    proposed for this test option as, in AAMA's view, it is possible that a 
    deployed system would not be interposed between the FMH and the 
    existing target locations. As a result, AAMA argued that the approach 
    angles proposed in the S8.13.4 are not practical for FMH impact tests 
    when the dynamic system is deployed. AAMA also contended that, under 
    the proposed Option 2 test, S8.13.3 indicates that initial forehead 
    contact is not necessary when conducting 29 km/h (18 mph) FMH impact 
    tests against a fully deployed system. AAMA questioned the intent of 
    this exclusion and relevance of FMH HIC calculated from an impact in 
    which forehead initial contact will most likely not occur between the 
    forehead impact zone and the target circle. The organization also 
    commented that the proposed target area for 19 km/h (12 mph) FMH impact 
    tests was too narrow. According to AAMA, this makes the determination 
    of which targets do or do not lie over the undeployed system extremely 
    difficult and impractical because the system will be covered by the 
    same piece of trim. Recognizing that those targets are to be protected 
    by the deployed system, AAMA recommended that any target locations that 
    are protected by the system in the deployed mode be qualified for 19 
    km/h (12 mph) FMH impact tests. AAMA also commented that coordination 
    of inflation timing with FMH impacts would be necessary, especially if 
    multiple impacts are required for certification or compliance tests. In 
    addition, AAMA voiced concerns that the 29 km/h (18 mph) FMH impact 
    requirement proposed for the deployed mode may discourage the 
    development of such systems. AAMA also commented that any specification 
    of a maximum on the time needed for a system to inflate is unwarranted, 
    that imposing an arbitrary time requirement is design restrictive, and 
    that specifying a short inflation time would result in an aggressive 
    system. AAMA commented that the inflation time should be determined 
    based on the specific system/vehicle designs and that the definition of 
    ``full-deployment'' needs clarification.
        Several aspects of the proposed Option 3 test created concerns for 
    AAMA. AAMA indicated that the full scale crash test specified in 
    S6.1(c) and S6.2(c) is burdensome, redundant, and without additional 
    safety benefits. AAMA also argued against use of the proposed modified 
    SID dummy (SID/HIII). The AAMA comments stated that the SID/HIII has a 
    biofidelity rating of 3.8, which is below the ISO recommended 
    acceptable level of 4.0. According to the AAMA, the SID is insensitive 
    to padding stiffness. Further AAMA said that its tests confirmed that 
    EuroSID-1 was a better dummy than the SID in discriminating change in 
    door padding. AAMA also believes that other dummy test devices would be 
    more appropriate and more biofidelic. AAMA stated that the EuroSID-1, 
    an improved EuroSID dummy, has a biofidelity rating of 4.2. Other 
    biofidelity ratings cited by AAMA in arguing against use of the SID/
    HIII are 5.9 for the BioSID, 4.2 for EuroSID-1, 3.8 for the SID/HIII, 
    3.2 for EuroSID and 2.3 for SID. In addition to concerns about 
    biofidelity, AAMA commented that for international harmonization 
    purposes, the EuroSID-1 is the most appropriate dummy. While AAMA 
    requested that the International Standards Organization (ISO) make 
    specific modifications to the EuroSID-1 dummy, AAMA strongly urged 
    NHTSA to specify the EuroSID-1, with proper modifications as suggested 
    by AAMA, as an interim dummy for Standard 201. AAMA also indicated it 
    had concerns regarding the 254 mm rigid pole proposed for use with the 
    Option 3 test. AAMA recommended that NHTSA specify a 350 mm pole in the 
    final rule instead of the NPRM proposed 254 mm pole. According to the 
    AAMA, a 254 mm pole was initially considered by ISO for its own side 
    impact pole test but was rejected on the basis that the 254 mm pole is 
    not representative of real world obstacles that cause serious injuries. 
    AAMA also stated that neck loading has not been adequately studied by 
    NHTSA and recommended that the topic be entered on the agenda of the 
    Motor Vehicle Safety Research Advisory Committee and the programs of 
    the International Harmonization Research Agenda. In regard to potential 
    injury caused by the deployment of dynamically deployed upper interior 
    head protection systems, AAMA recommended that an attempt be made to 
    evaluate the impairment caused by head injuries and by potential 
    hearing loss. AAMA suggested that a threshold for dynamic head 
    protection system deployment be established at the crossover point 
    between impairment caused by head injury and that caused by hearing 
    loss. Due to the lack of actual test data on injuries from system 
    deployment, AAMA recommended that this topic be a candidate topic for a 
    special NHTSA study.
        AIAM commented that some of its members have planned early 
    introduction of dynamic systems to provide enhanced interior head 
    impact protection and urged NHTSA to complete this rule as soon as 
    practical, preferably no later than March 1998.
        Volvo indicated its strong support for the proposed test procedures 
    and recommended that all three options be included in the final rule. 
    Volvo recommended that the final rule be published as soon as possible, 
    preferably no later than March 1998. Volvo indicated that it is 
    planning to install an inflatable curtain (IC) system in its production 
    vehicles. Based on its current knowledge, Volvo concluded that the IC 
    system would not only reduce head injuries but also prevent ejections 
    through side windows. Results of its out-of-position occupant tests 
    indicated that injuries of a greater severity level are not likely to 
    occur as a result of an occupant, child or adult, being too close to, 
    or in an undesirable position relative to the system. Volvo commented 
    that the 30 ms full-deployment requirement contained in the Option 2 
    proposal appears appropriate. In regard to Option 3, Volvo supported 
    the reduction of FMH impact speed from 24 km/h (15 mph) to 19 km/h (12 
    mph) for target locations above the stowed system, with the system 
    undeployed. However, Volvo commented that all target locations covered 
    by the deployed system should be also tested only up to 19 km/h (12 
    mph) and that the SAE 95th percentile eyellipse should not be used as a 
    sole criterion to determine protection against head impacts against A/
    B-pillars and side rails. Volvo also indicated that clarification is 
    needed in regard to those targets contiguous to the system's mounting 
    and inflation components, but which are not within the 24 km/h (15 mph) 
    impact target areas. Volvo commented that due to inadequate information 
    it could not see any utility in the use of a rear seat dummy in pole 
    impact tests.
        Nissan offered comments on the proposed Option 2 and Option 3. 
    Apparently, Nissan understood S6.1(b) `` * * * but exclusive of any 
    cover or covers, * * * '' to mean that testing would take place with 
    cover or covers removed and commented that testing dynamic systems with 
    full components in place would be more representative. In addition, 
    Nissan commented that the agency has not provided a clear justification 
    for specifying the 29 km/h (18 mph) FMH impact requirement. Nissan 
    questioned whether the increase in the FMH impact speed from 24 km/h 
    (15 mph) to 29 km/h (18 mph) would actually result in safety benefits 
    as projected by the agency. In regard to the Option 3 test procedure, 
    Nissan commented that the Option 2 test is sufficient and the Option 3 
    test is
    
    [[Page 41455]]
    
    unnecessary. Nissan also believed that the agency has not provided a 
    clear cost/benefits assessment for the new pole impact test. Nissan 
    commented that the SID/HIII is a dummy without proven biofidelity 
    characteristics and that biofidelity of the test dummy as a whole 
    system must be approved before promulgating a regulation. In addition, 
    Nissan commented that the use of the SID/HIII is in conflict with 
    international harmonization efforts since ISO is considering the 
    EuroSID-1 as the side impact dummy on the global basis.
        IIHS supported the proposal contained in the NPRM. IIHS commented 
    that two advanced side impact air bag systems (ITS and IC) might have 
    to be excluded from the U.S. market in the near future if the Standard 
    201 requires 24 km/h (15 mph) FMH impact tests for all vehicle upper 
    interior components. In addition, IIHS commented that the proposed 29 
    km/h (18 mph) pole impact test provides a reasonable demonstration of 
    the effectiveness of such dynamic systems. However, IIHS commented that 
    NHTSA should be more concerned about the seating height of the dummy 
    test device since the baseline pole impact test is configured to ensure 
    a significant head contact with the pole. Based on its test data, IIHS 
    suggested that a taller dummy (SID with the Hybrid III head/neck system 
    instead of SID/HIII (using a modified neck bracket)) may provide a more 
    reliable test. In addition, IIHS commented that the 350 mm diameter 
    pole would produce a more repeatable test.
        Advocates supported the proposed amendments while offering several 
    comments regarding the factual basis for the agency's tentative 
    conclusions as set forth in the NPRM. Advocates argued that the quality 
    of the administrative record for the NPRM was poor and that many public 
    respondents were compelled to rely on the opinion of NHTSA about the 
    value of the advanced dynamic systems. Advocates also argued that the 
    agency was relying on manufacturer claims about the impossibility of 
    complying with FMH impact speeds higher than 19 km/h (12 mph) for 
    target SR3 without interrupting smooth interior trim design. In 
    Advocates' view, the alleged marketing impact of discontinuous interior 
    trim surfaces is a very poor reason for NHTSA to grant an exemption 
    from a prevailing safety standard that could lead to additional 
    injuries, especially when many young children would be placed in the 
    rear seat. Advocates indicated that by exempting SR3 from 24 km/h (15 
    mph) FMH impact, NHTSA has begun to descend a slippery slope of 
    exemptions. Advocates suggested that this is the second time in the 
    last few years in which NHTSA has been willing to trade increases in 
    certain types of injuries for a claimed greater reduction in overall 
    injuries and in their severity.
        Advocates also criticized the agency's tentative conclusion that 
    the effectiveness of dynamic systems justified testing the target 
    points near the undeployed systems at lower impact speeds. In 
    Advocates' view, NHTSA's benefit estimate is based on some hypothetical 
    assumptions, including the use of unproven levels of dynamic system 
    effectiveness, two different injury curves, and manufacturer generated 
    sled test data. Advocates also contends that the proposals in the NPRM 
    do not sufficiently address safety concerns relating to rear seat 
    occupants. The organization believes that the agency has ignored the 
    fact that a massive displacement of young children from the front seats 
    to rear seats will occur as frontal air bags become the norm. In 
    particular, Advocates cited the agency's estimate of additional loss of 
    only 17 lives and 230 non-fatal injuries contingent on exemption of SR3 
    from a 24 km/h (15 mph) compliance test as exceedingly 
    optimistic.1
    ---------------------------------------------------------------------------
    
        \1\ Advocates evidently misread NHTSA's evaluation of additional 
    deaths and injuries. The agency estimate was in fact far lower--4 
    fatalities.
    ---------------------------------------------------------------------------
    
        Advocates also noted that the dynamic head protection test options 
    contained in the NPRM provide no specification for sensor performance. 
    It is possible, Advocates states, that the number and rate of more 
    severe injuries due to a system malfunction would be considerably 
    larger than NHTSA expects. In addition, Advocates also contends that it 
    is inappropriate for NHTSA to argue for or rely on anti-ejection 
    benefits in its benefit estimate in support of the installation of 
    dynamic systems when no rollover test was conducted by NHTSA, nor by 
    any manufacturers, to verify these benefits.
        Advocates made numerous comments related to the proposed pole 
    impact test. Advocates commented that the rigidity of the pole is not 
    specified and that the yaw, pitch and roll behavior of the vehicle is 
    controlled in such a way that the proposed pole impact test would not 
    be representative of the real world crash condition. To evaluate the 
    effect of dynamic systems (including side thorax air bags) on out-of-
    position children in rear seats, Advocates supported the use of 
    instrumented dummies in this seating position to determine the extent 
    to which the head of occupants of various sizes would impact target 
    points lying over the stowed dynamic system. Advocates also expressed 
    concerns about head pocketing and neck injury that could potentially 
    occur when occupants encounter an inflated dynamic system. In addition, 
    Advocates voiced concerns that the SID/HIII test dummy proposed for use 
    with the pole test may not be a reliable test device.
        VW expressed concerns regarding harmonization, test procedures, and 
    the effective date of the final rule. VW argued that any differences 
    between NHTSA's proposed Option 3 test procedure and the ISO 
    recommended pole test is contrary to international harmonization. In 
    particular, VW argued that the pole used in the Option 3 test should be 
    350 mm in diameter and the EuroSID-1 should be used rather than the 
    SID/HIII. VW pointed out that significant changes have been made to 
    EuroSID since 1990 and that the EuroSID-1 has adopted the head of the 
    Hybrid III dummy. Accordingly, VW believes that the EuroSid-1 would 
    meet the requirements of the Option 3 pole test. VW stated that the 
    proposed definition for the 19 km/h (12 mph) impact target areas is too 
    restrictive. The company believes deployment requirements would involve 
    system packaging and cover design that precludes the use of the padding 
    needed to meet the 24 km/h (15 mph) impact within the areas adjacent to 
    the undeployed system. VW contended that the dynamic system, in its 
    full-deployment mode, would continue to provide protection by 
    preventing head contacts with interior structural components. 
    Therefore, VW believes that those target points that are covered by the 
    deployed system should be also tested at 19 km/h (12 mph) impact speed. 
    In regard to the proposed 30 ms maximum time period for reaching full 
    deployment, VW stated that specifying a maximum time for full 
    deployment is not necessary. VW urged NHTSA to issue a final rule with 
    an immediate effective date to allow manufacturers to implement 
    dynamically deployed upper interior head protection systems as soon as 
    possible.
        Mercedes offered comments on the proposed Option 2 and 3 test 
    procedures. In regard to the Option 2 test procedure, Mercedes 
    indicated that it at present is not considering its original design 
    concept of a dynamic padding system and decided to adopt an inflatable 
    curtain (IC) system. In Mercedes' view, none of the currently known 
    dynamic systems (the ITS/IC systems) can be certified using the Option 
    2 test procedure. Mercedes commented that the maximum 30 ms time for 
    full-deployment may be inappropriate but is sufficient for both
    
    [[Page 41456]]
    
    Option 2 and Option 3 tests. In addition, Mercedes requested that NHTSA 
    address the procedure for maintaining system pressure during multiple 
    impacts, when using Option 2 test. Mercedes also commented that the 
    definition for exempted target points should include the area about 25 
    to 50 mm (1.0 inch to 2.0 inches) wide surrounding the stowed dynamic 
    systems.
        Mercedes' comments indicated its agreement with the proposed Option 
    3 test. Although Mercedes had no experience with pole tests other than 
    the 90 degree impact using a EuroSID dummy, it supported the agency's 
    concept that the 90 degree impact represents the possible worst case 
    condition. Mercedes commented that target locations BP2 and BP3, being 
    protected by the dynamic system in its deployed mode, should be tested 
    at 19 km/h (12 mph) in its undeployed mode. Mercedes also indicated 
    that the definition for exempted target points should include the area 
    about 25 to 50 mm (1.0 inch to 2.0 inches) wide surrounding the stowed 
    dynamic systems. In addition, Mercedes stated that the proposed SID/
    HIII dummy is not used in the ISO pole test procedure. The company 
    believes that use of the SID/HIII is contrary to harmonization goals 
    and that other dummies, such as EuroSID-1, should be allowed as an 
    optional alternative to the SID/HIII during the phase-in period.
        Autoliv, a safety equipment manufacturer and supplier, indicated 
    that all three options should be maintained in the final rule. In 
    addition, Autoliv offered specific comments on options 2 and 3. Autoliv 
    stated that determining full-deployment is very difficult and 
    manufacturers should be given an opportunity to provide clear data to 
    describe that specific state. In addition, Autoliv commented that the 
    29 km/h (18 mph) FMH impact speed specified in Option 2 should be 
    reduced to 24 km/h (15 mph). In reference to the Option 3 proposed test 
    procedure, Autoliv argued that the 19 km/h (12 mph) FMH impact tests in 
    the undeployed mode should be applicable to all target points that are 
    covered or protected by the deployed system. While supporting the 90 
    degree pole impact using one front seat dummy, Autoliv recommended that 
    the 350 mm pole be adopted for the purpose of enhancing test 
    repeatability.
        Toyota also offered comments on the Option 2 and Option 3 
    proposals. Toyota argued that the proposed options are excessive and 
    unjustified when compared with the original 24 km/h (15 mph) FMH impact 
    test. The company stated that the development of its air curtain system 
    was based on 19 km/h (12 mph) FMH impact tests in its undeployed mode 
    and 24 km/h (15 mph) pole impact tests using a EuroSID-1 dummy. 
    However, Toyota indicated that it prefers the Option 2 test with a 24 
    km/h (15 mph) speed in the full-deployment mode since the FMH test, in 
    spite of its relatively high HIC results, is more repeatable than the 
    pole test. Toyota also noted that for Option 2 the 30 ms full-
    deployment requirement is restrictive and unnecessary. Toyota believes 
    that it is more reasonable to require full-deployment prior to dummy 
    head contacts with the side structure in a Standard 214 side impact 
    test.
        Toyota indicated that for Option 2 compliance tests, NHTSA should 
    require that the system full-deployment condition be maintained 
    throughout the testing and that impact angles be the same as those used 
    for testing regular padding countermeasures. Toyota commented that all 
    target areas that are covered by deployed system should only be 
    required to meet 19 km/h (12 mph) FMH impact tests when undeployed.
        Toyota raised several issues concerning Option 3 test. Toyota 
    supported the use of the EuroSID-1 dummy and preferred the moving pole-
    to-vehicle test instead of the vehicle-to-pole test. Toyota commented 
    that the +/-38 mm (1.5 inches) impact location tolerance is not 
    acceptable because it is larger than 10% of the pole diameter. Toyota 
    argued that the 29 km/h (18 mph) pole test is not acceptable and that 
    Toyota has developed its air curtain system on the basis of 24 km/h (15 
    mph) pole impact tests. In addition, Toyota commented that all target 
    areas that are covered or protected by deployed system are qualified 
    for 19 km/h (12 mph) FMH impact test in its undeployed mode.
        AORC supported the proposed Option 2 test procedure and recommended 
    that the definition of the target points directly over the stowed 
    system be expanded to include any area that would be protected by the 
    system in its deployed mode. AORC supported the requirement of 
    conducting a Standard 214 side impact test to evaluate the full system 
    deployment condition. However, AORC commented that the 30 ms 
    requirement does not measure the variance of vehicle design parameters 
    and is, therefore, unnecessary. In its comments directed to the Option 
    3 test procedure, AORC supported the proposed test. However, AORC 
    recommended the use of a 350 mm diameter pole and an existing test 
    dummy with a proper biofidelity rating for the purpose of international 
    harmonization. In regard to potential injuries associated with 
    dynamically deployed upper interior head protection systems, AORC 
    commented that sled test data, including tests on unrestrained, small 
    or child seat occupant dummies, do not show increased neck loads or 
    other injuries. In addition, AORC commented that NHTSA should conduct a 
    benefit evaluation to determine the use of a rear seat dummy in pole 
    testing.
    
    II. Final Rule
    
        After review of the comments submitted in response to the NPRM and 
    further consideration of test and other data, NHTSA is adopting the 
    proposed amendments with some modifications. The most significant of 
    these modification is the abandonment, at the present time, of the in-
    vehicle test set forth as Option 2 in the NPRM. The agency has also 
    concluded that certain modifications to the Option 3 proposal are 
    appropriate. These modifications include an expansion of the area over 
    a stowed dynamic system that is subject to testing at the reduced 19 
    km/h (12 mph) FMH impact speed, modifications to the specifications for 
    the rigid pole, minor changes to the specifications for vehicle test 
    attitude to accommodate different vehicle propulsion systems, and a 
    modification to the proposed seating procedure for the SID/HIII dummy. 
    Explanation of these changes is provided below.
    
    A. Deletion of the Proposed In-Vehicle Test
    
        Two commenters, Nissan and Toyota, indicated a preference for the 
    Option 2 test over the Option 3 vehicle-to-pole test. Otherwise, none 
    of the comments received in response to the NPRM indicated that any 
    manufacturers intended to rely on the proposed test specified in Option 
    2. Mercedes indicated that, at present, none of the known dynamically 
    deployed systems can be certified using the Option 2 test procedure. 
    AAMA also commented that it do not know of any system that would be 
    tested using this optional test procedure.
        Following the publication of the August 1995 final rule, several 
    manufacturers presented information to NHTSA regarding the development 
    of advanced dynamically deployed systems. Ford indicated it was 
    developing a new side impact air bag system for both chest and head 
    protection. BMW and Volvo disclosed their development of the ITS and 
    the IC, respectively. Mercedes indicated that it
    
    [[Page 41457]]
    
    was studying a ``dynamically deployed padding'' system. Mercedes 
    described this system as special materials used for the molding and 
    trim of the A- and/or B-pillars and side rails. In a side impact, those 
    materials would be energized and enlarged to provide greater cushioning 
    and improved head protection.
        While the Option 3 test procedure was intended to be used for 
    certifying the ITS, IC and other side impact air bag systems, the 
    Option 2 test procedure was conceived by the agency as potentially 
    appropriate for certifying potential dynamic padding designs such as 
    the system once under development by Mercedes. Mercedes is presently 
    not considering the inflatable padding concept and adopted an IC 
    design. However, Toyota, which is also developing an IC design, 
    indicated that it preferred to test this design through use of the 
    Option 2 test with an FMH impact of 24 km/h (15 mph) against a deployed 
    system rather than the Option 3 vehicle to pole test. The company's 
    comments indicated that it believed the Option 2 test would be more 
    repeatable and realistic. Toyota did not, however, elaborate on these 
    points other than to express its view that Option 2 testing would be 
    representative of a variety of crash modes while the Option 3 test 
    represents a single crash mode. Nissan expressed its preference to the 
    Option 2 test on the basis of cost, indicating that it believed the 
    Option 3 test was not needed and would be a higher cost alternative to 
    Option 2. Nissan did not, however, submit any data indicating that this 
    belief was based on any testing it had performed or that its preference 
    for the Option 2 test was based on any system it was developing.
        NHTSA is concerned that the Option 2 test presents a number of 
    technical challenges which indicate that it may not be as repeatable or 
    reliable as the Option 3 test. For instance, the validity of the HIC 
    transfer function specified in S7(a) is in question when it is applied 
    to FMH impacts against a dynamically deployed system. In addition, 
    there may be other technical problems with the test related to the 
    flexibility of deployed dynamic systems and the behavior of the FMH 
    when it makes contact with the system. The agency notes that it does 
    not have any experience in conducting tests with the FMH against a 
    deployed system and further observes that, with the exception of 
    Toyota, which conducted 15 mph FMH impacts against a deployed system, 
    no other manufacturers appear to have attempted such testing. This lack 
    of experience and test data make it difficult or impossible for the 
    agency to fully evaluate the Option 2 proposal at this time.
        NHTSA is aware that the Option 2 test has the potential to evaluate 
    system performance in a greater variety of crash modes than the Option 
    3 vehicle to pole test. However, the rapid development of dynamically 
    deployed upper interior head protection systems necessitates immediate 
    changes to Standard 201 to allow manufacturers the opportunity to place 
    these systems in production vehicles. The agency is confident that the 
    Option 3 test provides a valid means for assessing the performance 
    characteristics of dynamic head protection devices. Unfortunately, the 
    absence of data and experience in performing the proposed Option 2 test 
    does not allow NHTSA to have the same degree of confidence in the 
    Option 2 test. The agency may reconsider use of the Option 2 test in 
    the future, but has concluded that Option 2 must be deleted from this 
    final rule.
        The agency's decision to delete the Option 2 proposal from the 
    final rule renders further discussion of the comments relating to 
    Option 2 unnecessary. However, several issues which are germane to both 
    Option 2 and Option 3 are addressed in the discussion below relating to 
    Option 3.
    
    B. Vehicle-to-Pole Test
    
        The agency is adopting the Option 3 Test Procedure with one 
    modification. This modification, which expands the area over an 
    undeployed dynamic system which is subject to the 19 km/h (12 mph) FMH 
    impact test, does not substantially modify the Option 3 proposal set 
    forth in the NPRM. The agency notes that BMW, Volvo, IIHS, and AORC 
    substantially supported the Option 3 test procedure as outlined in the 
    NPRM. IIHS commented that the NPRM proposed pole test provided a good 
    demonstration of the additional head protection offered by systems such 
    as the ITS and IC. Three commenters, Toyota, Nissan and AAMA, do not 
    support the full scale pole impact test on the basis that the Option 3 
    test is redundant, burdensome and provides no additional safety 
    benefits.
        NHTSA observes that the 29 km/h (18 mph) vehicle-to-pole test was 
    suggested by BMW and supported by several European manufacturers who 
    have already installed or are planning to install dynamically deployed 
    upper interior head protection systems in their production vehicles. 
    The agency is employing this optional test procedure to accommodate 
    dynamic systems, which testing has shown to have substantial safety 
    benefits.
        Toyota, which has been using a 24 km/h (15 mph) pole test itself in 
    the development of a dynamic system, appears to be objecting to the 29 
    km/h (18 mph) impact speed of the Standard 201 pole test. As discussed 
    elsewhere in this notice, NHTSA believes that the 29 km/h (18 mph) 
    impact speed is necessary to provide assurance that dynamic systems 
    will provide safety benefits. Nissan's principal objection to the 
    Option 3 pole test was based on its view that the test was redundant 
    when the proposed Option 2 test was also available. However, now that 
    the Option 2 test has been withdrawn from consideration, Nissan's 
    objection is not valid. AAMA's objection that the Option 3 test was 
    unduly burdensome was not supported by any further explanation. Several 
    commenters raised various questions concerning the test procedure. 
    These questions included ones relating to the size and configuration of 
    the rigid pole, the suitability of the SID/HIII dummy, inclusion of a 
    dummy in the rear seat during testing, impact speeds, impact 
    tolerances, out of position occupants, target points subject to reduced 
    FMH impact speeds, benefit analyses, and the effective date of the 
    final rule.
    
    C. Rigid Pole
    
        In regard to the size of the rigid pole struck in the Option 3 
    test, IIHS, VW, Nissan, Autoliv and AORC commented that the pole should 
    be 350 mm in diameter, rather than the 254 mm pole proposed in the 
    NPRM. IIHS also commented that the 350 mm pole impact test is less 
    severe, but has higher test repeatability, than the 254 mm pole test. 
    AAMA commented that the 254 mm pole was initially considered, but was 
    rejected by ISO working groups because the 254 mm pole was not 
    representative of real world obstacles that would produce serious 
    injuries. In addition, AAMA pointed out that two recent ISO draft 
    technical reports (issued in May 1997) concerning the performance of 
    side air bags recommended the use of 350 mm pole. These 6 commenters 
    support the use of the ISO 350 mm pole for international harmonization 
    purposes.
        NHTSA began research to develop a test procedure for certifying the 
    advanced dynamic systems after the agency received information on the 
    advanced dynamically deployed upper interior head protection systems 
    from Ford, BMW, Mercedes and Volvo in 1995. The agency carefully 
    examined the draft ISO Technical Report ``Road Vehicles--Test 
    Procedures for Evaluating Various Occupant-Interactions with Deploying 
    Side Impact
    
    [[Page 41458]]
    
    Air Bags'' (ISO/TC 22/SC 10/WG 3 N100; Oct. 19, 1995) and attempted to 
    replicate, to the greatest possible extent, the test procedures 
    outlined in the draft report. Section 3.5 of the ISO report provided 
    the following specifications for the pole:
    
        A vertically-oriented circular, rigid pole-like metal structure, 
    beginning no more than 100 mm above the ground, and extending above 
    the roof of the impacting vehicle. The pole should be 200-380 mm in 
    diameter and set off from any vertical mounting surface by at least 
    1500 mm.
    
    NHTSA decided to adopt a 254 mm pole for the Option 3 test because it 
    is within the ISO recommended pole diameter range, results in a more 
    severe impact, and because the 254 mm pole is more representative of 
    impacts occurring in the United States. The agency also notes that the 
    Federal Highway Administration (FHWA) of the Department of 
    Transportation has accumulated extensive experience on side impact 
    tests against a 254 mm pole. FHWA's test experience enabled NHTSA to 
    develop a practical test procedure in a relatively short period of 
    time.
        In 1989, FHWA published a technical paper (SAE Paper 890377 ``A 
    Summary of Recent Side Impact Research Conducted by the Federal Highway 
    Administration'') on the subject. The paper indicated that each year 
    approximately 12,000 fatalities occurred in single vehicle crashes 
    against fixed objects and about 2,700 of the 12,000 fatalities occurred 
    in side crashes. About 60 percent of the 2,700 fatalities in single 
    vehicle side crashes were associated with impacts against trees, 
    utility poles, and other poles. FHWA concluded that the pole diameter 
    at the window sill level for most poles is approximately 254 mm. NHTSA 
    conducted a review of National Automotive Sampling System (NASS) data 
    in an effort to determine if the 254 mm diameter object is 
    representative of trees struck as well as poles. Unfortunately, the 
    available NASS data do not allow the agency to determine if the 254 mm 
    pole is representative of trees struck in crashes in the United States. 
    Nonetheless, the 254 mm diameter pole does represent an important 
    injury source responsible for a significant percentage of fatalities 
    occurring in single vehicle side crashes against fixed objects in the 
    United States. The ISO decision to reject the 254 mm pole was based on 
    French crash data indicating that a larger pole more appropriately 
    reproduced crashes in France. However, the French data also show that 
    pole impacts are an important source of occupant fatalities/injuries in 
    side crashes with fixed objects.
        After review of the available data, NHTSA does not agree with 
    AAMA's contention that the 254 mm diameter pole is not representative 
    of real world obstacles producing severe head injuries. The agency 
    notes that FHWA data, summarized and presented in SAE paper 890377, 
    show that side impacts to poles constitute a serious highway safety 
    problem in the United States. It should also be observed that the AAMA 
    comments are based on the French crash data. However, the French data 
    shows that the poles of 150-300 mm in diameter are an important injury 
    source in side crashes with fixed objects.2
    ---------------------------------------------------------------------------
    
        \2\ French data show that the distribution of the tree/pole 
    fatal impacts (excluding impacts with other fixed objects) is 18 
    percent to trees with a diameter of 300-400 mm, 24 percent to poles 
    (this may include trees since there is no mention of trees with a 
    diameter of less than 300 mm in the French crash data) with a 
    diameter of 150-300 mm. The French data seem to support using a 254 
    mm pole instead of a 350 mm pole because it shows a larger percent 
    of fatalities occurring in impacts against 150-300 mm poles than in 
    impacts against 300-400 mm diameter trees.
    ---------------------------------------------------------------------------
    
        NHTSA has determined that a 254 mm pole, a size within the range 
    recommended in the 1995 draft ISO technical report, simulates a real 
    world crash condition corresponding to a known highway safety problem 
    in the United States. As the 254 mm pole is representative of 
    conditions in the U.S., the agency has performed testing and research 
    using this pole size in developing the Option 3 test procedure.
        The 254 mm pole used in this test was first described in the 
    agency's March 7, 1996 ANPRM describing proposals for testing dynamic 
    systems. NHTSA did not receive any comments regarding pole size in 
    response to the ANPRM. The agency was aware, however, that some 
    manufacturers were using the 254 mm pole for vehicle-to-pole impact 
    tests while the agency pursued its own testing to validate the proposed 
    test procedure. When the two ISO draft technical reports that rejected 
    the 254 mm pole were issued in May 1997, the agency had already taken a 
    considerable number of steps toward finalizing its test procedure. It 
    should also be noted that those manufacturers who currently plan to 
    install advanced dynamic systems in their vehicles do not oppose the 
    use of 254 mm pole. In addition, adoption of the 350 mm pole size, 
    which has not been finally adopted by the ISO working groups, would 
    result in a significant delay of this rulemaking, since additional 
    testing would be necessary.
        NHTSA has concluded that testing with the 254 mm diameter pole is 
    practical, that this test is repeatable, and that the test is a valid 
    means for assessing the performance of dynamic systems. NHTSA is, 
    however, modifying the specifications for the rigid pole. The diameter 
    of the pole remains at 254 mm, but NHTSA is adding a tolerance of 
    3 mm to the pole diameter specification. As proposed in the 
    NPRM, S8.25 specified that the rigid pole must begin at a point not 
    more than 102 mm (4 inches) off the ground and extend to a minimum 
    height of 80 inches. As certain devices used for transporting a vehicle 
    into the pole during a test may require that the vehicle be raised off 
    of the ground, NHTSA has concluded that the dimensions proposed in the 
    NPRM might result in a pole configuration where the pole does not 
    extend above the roof of the vehicle or at its lowest point could 
    interfere with carriage of the test vehicle into the pole. Accordingly, 
    the final rule has modified S8.25 to specify that the lowest point of 
    the pole be not more than 102 mm (4 inches) above the lowest point of 
    the tires of the test vehicle and that the highest point of the pole 
    extend above the highest point of the roof of the test vehicle.
        In addition, the agency notes that, as proposed, S8.25 specified 
    that the test vehicle not strike any portion of the pole mount at any 
    time during the test. After conducting several tests, NHTSA has 
    concluded that this specification is unrealistic and has modified it to 
    state that the test vehicle may not contact any part of the pole 
    support structure within 100 milliseconds of the initial vehicle to 
    pole contact.
    
    D. SID/HIII Dummy
    
        Although the agency published a separate Notice of Proposed 
    Rulemaking (NPRM) on December 8, 1997 (62 FR 64546) outlining proposed 
    specification for the SID/HIII dummy, it also addressed the SID/HIII in 
    the NPRM preceding this final rule. As the NPRM proposing the SID/HIII 
    was not issued simultaneously with the proposed changes to Standard 
    201, some commenters offered their views regarding the SID/HIII in 
    response to August 26, 1997 Standard 201 NPRM. Mercedes and VW 
    commented that significant changes to EuroSID have been made since 1990 
    and that the ISO pole test procedure specifies the new EuroSID-1 dummy 
    with the Hybrid III head. These commenters recommended that NHTSA adopt 
    the EuroSID-1 for international harmonization purposes. Nissan 
    commented that the SID/HIII dummy does not have a proven biofidelity 
    rating and is in conflict with harmonization. Toyota also supported the 
    use of the EuroSID-1. AORC
    
    [[Page 41459]]
    
    commented that the dummy test device should have a proper biofidelity 
    rating and be capable of harmonization with the ISO standard. The 
    organization also stated that an existing dummy should be specified as 
    an option pending further evaluation of the SID/HIII dummy. AAMA argued 
    against use of the SID/HIII on the basis that the proposed dummy has a 
    much lower biofidelity rating than the EuroSID-1 and the BioSID and 
    that the EuroSID-1 is better in discriminating changes in door padding. 
    Therefore, AAMA recommended that NHTSA adopt a modified EuroSID-1 as an 
    interim dummy instead of the SID/HIII. IIHS raised the issue concerning 
    the seating height of the dummy, stating that a taller dummy seating 
    height provides for a better test configuration. Advocates commented 
    that it is waiting to see if the SID/HIII is a reliable dummy test 
    device.
        The commenters raise two significant issues. The first is that the 
    SID/HIII has a lower biofidelity rating than the BioSID and the 
    EuroSID-1. Secondly, the use of any dummy other than the EuroSID-1 
    conflicts with international harmonization.
        With respect to the dummy biofidelity, AAMA commented that the ISO 
    biofidelity ratings (5.9, 4.2 and 3.8 for the BioSID, EuroSID-1 and 
    SID/HIII dummies, respectively) demonstrate that the SID/HIII is not a 
    proper choice for a pole impact test. The agency does not agree that 
    the SID/HIII is not a proper choice for head-to-pole impact tests 
    because the SID/HIII has a head and neck system similar to the BioSID. 
    The biofidelity ratings cited by AAMA are ``overall'' ratings, not just 
    for the head/neck complex. However, the critical component for the 
    purposes of the Option 3 test is the head and neck. AAMA also commented 
    that the NHTSA's biofidelity rating for the SID/HIII is high because 
    the agency did not combine the neck and shoulder components into an 
    integrated assembly for proper rating. Since the SID/HIII does not have 
    a metal skeletal shoulder structure and is not sensitive to door 
    padding stiffness, the ISO working group gave the SID shoulder assembly 
    a ``zero'' rating. NHTSA has concluded that this rating is not relevant 
    to use of the SID torso in the SID/HIII dummy proposed for the Option 3 
    test. The agency observes that no relevant data on pole (or high, rigid 
    wall) impact tests were considered in the development of the ISO 
    biofidelity rating for side impact dummies. In high speed lateral 
    impacts against high, rigid walls, the shoulder of human cadaver test 
    subjects collapse in a movement towards the spine. In a rigid pole 
    impact (similar to a high, rigid wall impact), the dummy shoulder 
    component should, like the shoulder of a human cadaver, collapse 
    without shielding the head and neck from impacts with intruding objects 
    such as a rigid pole. The agency notes that the current biofidelity 
    rating scheme used by the ISO working group does not recognize this 
    important factor. Further, NHTSA believes that existing data 
    demonstrate that the SID shoulder, which collapses as a human cadaver 
    shoulder does in side impact tests, should receive at least a 2.5-3.0 
    rating for pole impacts. With this 2.5-3.0 rating, the SID/HIII 
    receives a 4.2 overall biofidelity rating. This rating is above the ISO 
    recommended 4.0 acceptable level.
        The BioSID shoulder is rigidly attached to a stiff clavicle 
    component and the EuroSID-1 shoulder is a rigid component with limited 
    forward rotation capability upon contact. The agency believes that the 
    shoulders of those two dummies would not collapse and move out of the 
    way under various lateral impact conditions. In contrast, the SID/HIII 
    shoulder is made of foam materials and will collapse upon an impact. 
    The ISO working group does not acknowledge that this special shoulder 
    design makes the SID/HIII a desirable dummy test device for the 90 
    degree pole impact test. The agency notes that the BioSID that has the 
    highest biofidelity rating among all five existing side impact dummies 
    (new ratings from the ISO working group; BioSID=5.9, EuroSID-1=4.2, 
    SID/HIII=3.8, EuroSID=3.2, and SID=2.3.), but that BioSID proved to be 
    unsuitable in one of the 29km/h (18 mph), 90 degree pole impact tests 
    conducted at IIHS in accordance with the NPRM proposed test procedures. 
    In a test of a 1997 BMW 528i vehicle, the BioSID shoulder joint 
    contacted the intruding side structure and failed to collapse. This 
    failure to collapse, which is inconsistent with human cadaver tests, 
    prevented head-to-pole contact. This unhuman-like response of the 
    BioSID shoulder demonstrates a possible deficiency in the ISO 
    biofidelity rating scheme. In a subsequent IIHS pole test using a SID 
    with the Hybrid III head/neck assembly, the shoulder collapsed in a 
    representative fashion and the test was successful. In its comments, 
    IIHS pointed out that the vehicle-to-pole impact test is highly 
    repeatable when the SID with a Hybrid III head/neck assembly is used.
        NHTSA does not agree with those commenters urging use of the 
    EuroSID-1 dummy for the Option 3 test. It is anticipated that the 
    kinematics of the EuroSID-1 shoulder, if it does not prevent head-to-
    pole contact, may induce fore and aft head motion prior to head impact. 
    NHTSA believes that such fore and aft head motion of the EuroSID-1 
    would be difficult to control. A 1988 report regarding the EuroSID 
    (Proceedings of the Seminar held in Brussels, Dec. 11, 1988) indicated 
    that the EuroSID shoulder rotation mechanism produces a force ranging 
    from 2.0 to 3.4 kN (450 to 760 pounds) during a series of 4.3 m/s (9.6 
    mph) impacts using a 23.4 kg (51.5 pounds) impactor. The peak force 
    occurs within 10 to 15 ms upon impact. NHTSA does not know if the 
    performance of the EuroSID-1 is improved in this area and those urging 
    use of the EuroSID-1 have not supplied any data on this point. The 
    agency suspects that the head impact location tolerance for pole impact 
    tests may be very difficult to define if the EuroSID-1 is used as the 
    dummy test device. The EuroSID-1 has also not been generally accepted 
    by the testing community as a valid test device. Modifications to this 
    dummy are ongoing and an intensive evaluation program of the EuroSID-1 
    is expected to begin in 1999. NHTSA cannot seriously consider the 
    EuroSID-1 as a test device, particularly for the 90 degree pole tests, 
    until this device becomes generally accepted and sufficient data become 
    available to assess its performance.
        NHTSA, as well as IIHS and several interested manufacturers, have 
    conducted vehicle-to-pole impact tests using the SID/HIII dummy (or 
    SID+Hybrid III head/neck/neck bracket) for the purposes of evaluating 
    proposed Option 3 test procedure. The agency has concluded that the 
    SID/HIII is an appropriate dummy test device for this test. The BioSID 
    is not acceptable and the EuroSID-1 is not yet ready. Given the fact 
    that NHTSA must promulgate a final rule to accommodate dynamically 
    deployed upper interior head protection systems and that the SID/HIII 
    offers adequate performance using existing and proven components, the 
    agency concludes that the SID/HIII is the best test device available 
    for the Option 3 test.
        With respect to the international dummy harmonization, the agency 
    supports the goal of developing a global dummy test device. The agency 
    will evaluate the global dummy test device after its completion and 
    then decide what to do. At present, the agency has decided to adopt the 
    SID/HIII dummy for head-to-pole impact evaluation.
        In reference to the IIHS's concern on dummy seating height, the 
    agency concludes that current test data show that the seating height of 
    the SID/HIII
    
    [[Page 41460]]
    
    dummy is sufficient. With respect to the Advocates' concern on dummy 
    reliability, the agency concludes that the SID/HIII, which is 
    constructed from known components with sufficient durability, is a 
    reliable dummy test device for the 90 degree pole test.
    
    E. Rear Seat Dummy
    
        A number of commenters discussed the use of a rear seat occupant 
    dummy in the Option 3 test. AORC, Volvo and BMW each indicated that 
    placing a dummy in the rear seat would not produce meaningful data and 
    would add cost and complexity to the test procedure. After 
    consideration of these comments and after performing several Option 3 
    vehicle to pole tests, NHTSA has concluded that placing a dummy in the 
    rear seat of the struck side in a vehicle to pole test is unnecessary. 
    Both the pole test data and a recent safety benefit analysis (Benefits 
    Analysis of the Inflatable Tubular Structure (ITS), August 19, 1997) 
    submitted by BMW indicate that a rear seat dummy is not needed. NHTSA 
    conducted five 29 km/h (18 mph) pole impact tests using 1995 Hondas to 
    verify the proposed dummy seating procedure and other aspects of the 
    proposed Option 3 test. In the first two tests, the dummy head impacted 
    the B-pillar without really contacting the pole. The HIC readings for 
    those two tests were in the 500-600 range, far below the 1,000 limit. 
    These results indicate that in a 29 km/h (18 mph) side impact with a 
    254 mm pole, HIC scores near or above 1000 are not likely to be 
    encountered unless the dummy's head makes direct contact with the pole 
    itself. The agency believes that the head of a rear seat dummy will not 
    contact the intruding pole aimed at the front occupant's head and is 
    likely to contact some components more forgiving than the B-pillar, 
    resulting in a low HIC reading. A recent safety benefit analysis 
    submitted by BMW estimates that, for rear seat occupants, the overall 
    number of AIS 3-5 injuries saved by its ITS system would be larger than 
    the baseline number of AIS 3-5 injuries from side rail contacts. 
    Inflatable curtain systems now under development protect both the front 
    seat and the rear seat occupants. In view of these factors, it appears 
    that dynamic systems offer considerable safety benefits for rear seat 
    occupants and the addition of a test dummy to the rear seat in the 
    Option 3 test is unwarranted.
    
    F. Impact Speed and Conditions
    
        Toyota commented that the pole impact speed should be 24 km/h (15 
    mph) instead of 29 km/h (18 mph) and the proposed impact tolerance 
    limit of 38 mm (1.5 inches) that is more than 
    10 percent of the pole diameter is not acceptable. In contrast, BMW 
    commented that the proposed impact location tolerance limit is 
    reasonable. In its comments, Advocates indicated that it supports the 
    proposed pole test procedure because it represents the possible worst-
    case crash condition, although it does not conform with real crashes 
    given that the roll, yaw and pitch angles are controlled in the test. 
    Further, Advocates expressed concerns that many manufacturers will 
    avoid the pole test since the agency proposed two alternative test 
    procedures (e.g., Options 2 and 3). Volvo commented that the pitch 
    angle does not seem to have any effect, but the yaw angle appears to be 
    a sensitive factor, to the proposed 90 degree pole impact test.
        The agency has concluded that the 29 km/h (18 mph) impact speed 
    specified for Option 3 is appropriate. Discussion of this issue in the 
    NPRM indicated that this speed was selected in an attempt to ensure 
    that any safety losses incurred by allowing manufacturers to test 
    certain target points at 19 km/h (12 mph) would be offset by a safety 
    benefit of similar or greater magnitude. Benefit analyses performed by 
    the agency and by others indicate that the 29 km/h impact speed 
    specified for Option 3 is appropriate to ensure a net increase in 
    safety.
        In regard to minimum tolerances for pole contact with the test 
    vehicle, the agency does not agree with Toyota's contention that the 
    38 mm (1.5 inches) tolerance limit is not 
    acceptable because it is greater than 10 percent of the pole diameter. 
    The tolerance is measured from the longitudinal centerline of the pole 
    to ensure a square head impact and is based on the head contacting the 
    pole within a segment that is relatively perpendicular to the head 
    velocity. In selecting this tolerance, the agency does not believe that 
    the pole diameter is particularly relevant. Testing has revealed, 
    however, that the tolerance is necessary to assure practicability. 
    Accordingly, the agency has concluded that it will retain the impact 
    tolerance proposed in the NPRM for the final rule.
        NHTSA is also incorporating the requirement contained in the Option 
    3 proposal that the test vehicle strike the pole at an angle of 90 
    degrees with an impact tolerance of 3 degrees. The agency 
    has concluded that this specification is sufficient and that roll, yaw 
    and pitch angles do not need be specified. NHTSA agrees with Volvo's 
    comment that yaw angle may alter the impact location. However, the 
    purpose of controlling those angles in a pole impact test is to 
    determine a practical impact location tolerance level. The pole impact 
    tests conducted by the agency and other interested manufacturers 
    indicate that the impact location tolerance proposed in the NPRM is 
    reasonable. In view of this, NHTSA has concluded that it is not 
    necessary to specify roll, pitch and yaw angles in the final rule and 
    that the NPRM proposed impact angle, with a tolerance limit of +3 
    degrees, will be incorporated in the final rule.
    
    G. Target Locations
    
        A number of commenters offered their views on target locations for 
    the 19 km/h (12 mph) FMH impact test in Option 3. Mercedes, Volvo, VW, 
    BMW, Toyota, Autoliv, and AAMA stated that the 19 km/h (12 mph) impact 
    requirements for target locations over a stowed dynamic system is 
    desirable and that target locations protected by the deployed dynamic 
    system should also be tested at 19 km/h (12 mph) impact speed. In 
    addition, Mercedes, VW, BMW and AAMA commented that the proposed 19 km/
    h (12 mph) target impact area is too narrow since the required system 
    deployment would involve system packaging and cover designs. These 
    commenters argued that the definition of 19 km/h (12 mph) targets 
    should include the peripheral area surrounding the dynamic system in 
    its stowed position. Mercedes commented specifically that this 
    peripheral area include a 25 to 50 mm (1.0 to 2.0 inch) surrounding 
    area. However, BMW suggested a 50 mm (2.0 inch) surrounding area. Both 
    Volvo and BMW commented that the 95th percentile SAE eyellipse can not 
    be the sole criterion to determine protection on head impacts against 
    the A/B-pillars and side rails. BMW also commented that the range of 
    occupant heads extends well above and behind the SAE eyellipse. Some 
    manufacturers and AAMA indicated that target exemptions should be 
    determined using the potential head protection capability of the 
    deployed system.
        The foregoing comments raise three issues: first, whether target 
    locations covered or protected by the deployed system should be tested 
    at 19 km/h (12 mph); second, whether the 19 km/h (12 mph) target 
    location area should be expanded to include the peripheral area 
    surrounding the stowed system; and third, whether the SAE 95th 
    percentile eyellipse is a suitable measure for determining head 
    protection. With respect to targets ``protected'' by a dynamic system, 
    the agency proposed that all target locations that are located over a 
    stowed dynamic system, including mounting and inflation
    
    [[Page 41461]]
    
    components, but exclusive of cover and covers, are excluded from the 24 
    km/h (15 mph) FMH impact requirements. However, those target locations 
    must comply with the 19 km/h (12 mph) FMH impact requirements. 
    Recognizing that a deployed system would prevent head contacts with 
    some additional target locations other than those covered by the stowed 
    system, the agency solicited comments on how to define the exclusion 
    coverage. The commenters indicated that all target locations covered by 
    the deployed system should be excluded from 24 km/h (15 mph) FMH impact 
    tests. NHTSA notes that this definition is very subjective and would 
    certainly create problems in testing and enforcement. However, the 
    agency has found a more comprehensive definition of target points 
    ``covered'' or ``protected'' by a dynamic system to be elusive. A point 
    that may be protected from one class of occupant may not be protected 
    from another. Similarly, the points protected and the extent of that 
    protection may vary with system design. In the interests of expediting 
    issuance of the final rule, the agency has concluded that the 
    definition of target points subject to the reduced 19 km/h (12 mph) FMH 
    impact requirements is the best definition available at this time and 
    that no additional target locations should be excluded from 24 km/h (15 
    mph) FMH impact tests.
        A number of manufacturers asked that the definition of the target 
    locations subject to the 19 km/h (12 mph) FMH impact requirements be 
    expanded to include an area 25 to 50 mm (1.0 to 2.0 inch) around the 
    periphery of the undeployed system and its components. These commenters 
    argued that dynamic systems do not simply deploy through the cover 
    directly over the stowed system. Moreover, the manufacturers indicated 
    that additional space is needed to provide the necessary transition 
    between the ``24 km/h (15 mph)'' padding and the ``19 km/h (12 mph)'' 
    padding.
        NHTSA concludes that this is a valid concern. An inflatable system 
    may not deploy directly through the area over where it is stowed. These 
    systems may go through the surrounding area. In order to allow system 
    deployment with minimum interference, it may be important to provide a 
    transition area where padding is reduced. BMW indicated that target SR2 
    is slightly off the stowed ITS position and must be tested, according 
    to the current proposal, at 24 km/h (15 mph) impact speed. Since the 
    roof liner/trim is a continuous piece, the whole roof liner/trim must 
    be redesigned to comply with the 24 km/h (15 mph) FMH impact 
    requirements. BMW contends that this defeats the original purpose of 
    exempting target locations from 24 km/h (15 mph) tests to allow 
    manufacturers to install enhanced head protection systems, such as ITS 
    and IC, in their production vehicles. The company suggested that an 
    additional 50 mm (2.0 inch) area that surrounds the periphery of the 
    stowed system be included in the definition of the exempted target 
    locations. The agency does not agree with BMW's contention that 
    compliance with the 24 km/h (15 mph) impact requirement in areas near a 
    stowed system is difficult or impossible if the two areas share common 
    trim, but it does acknowledge that the requirements of different 
    dynamic systems may require that an area around the outside of the 
    stowed system must be subject to the 19 km/h (12 mph) FMH impact 
    requirement to allow a variety of systems an opportunity to deploy 
    upward or downward as well as directly through the trim covering the 
    device. NHTSA observes that the agency's benefit estimate assumed that 
    SR1, SR2 and SR3 targets would be exempt from 24 km/h (15 mph) 
    compliance tests. Accordingly, this modification, which may exclude 
    these points depending on system design, would not alter the agency's 
    prior safety benefit estimate. The final rule modifies the Option 3 
    proposal to add areas around the periphery of an undeployed system to 
    those target points subject to the 19 km/h (12 mph) FMH impact 
    requirements.
        Commenters also offered their views regarding the use of the SAE 
    95th percentile eyellipse to define those targets that would be subject 
    to FMH testing at reduced impact speeds. NHTSA agrees with Volvo and 
    BMW that the eyellipse should not be used as a sole criterion to 
    determine target location exemption. The agency entertained the 
    possibility of using the eyellipse to accommodate side air bag systems 
    installed inside the seat bolster or outer edge of the seat back. 
    However, AAMA did not comment on this specific item but suggested, as 
    did some foreign manufacturers, that any target locations where head 
    contacts are protected by the deployed system should be excluded from 
    the 24 km/h (15 mph) FMH impact test. As noted above, NHTSA believes 
    this suggestion to be impractical. Since the agency's existing 
    definition allows the installation of dynamic systems, there is 
    insufficient justification for excluding additional target locations. 
    NHTSA concludes that the SAE 95th percentile eyellipse is, by itself, 
    not an appropriate mechanism for determining targets subject to lower 
    impact speeds.
    
    H. Safety Concerns
    
        A number of commenters offered their views on safety concerns 
    associated with the deployment of dynamically deployed upper interior 
    head protection systems. Toyota, offering its view that the 29 km/h (18 
    mph) impact proposed for testing deployed systems was excessive, argued 
    that the 29 km/h (18 mph) impact requirement would result in 
    dangerously aggressive dynamic systems. Advocates commented that as 
    frontal air bag concerns displace children from front seat to rear 
    seats, reducing impact requirements for any rear seat area target 
    points should be regarded with suspicion. In addition, Advocates 
    commented that by excluding the SR3 target point without adequate 
    justification, NHTSA is deferring to the wishes of manufacturers 
    without any justification. Volvo commented that their out-of-position 
    occupant tests indicate that injuries of a greater severity level are 
    not likely to occur as a result of an occupant, child or adult, being 
    too close to, or in an undesirable position relative to, the system. 
    BMW commented that the ITS system, tailored to protect the head of an 
    adult occupant, is very small and deploys with a minimum amount of 
    energy. According to BMW, the ITS does not present an ``aggressive'' 
    threat to vehicle occupants. In its comments, AORC indicated that sled 
    tests, including tests on unrestrained, small or child seat dummies, do 
    not show increased neck loads or other injuries resulting from the 
    deployment of dynamic systems.
        While NHTSA agrees with Advocates that many young children will be 
    seated in rear seats instead of front seats, the agency does not agree 
    that this phenomenon, in conjunction with the exclusion of SR3 from the 
    24 km/h (15 mph) compliance test, creates a safety concern. In a non-
    rollover crash, the head of a child in the rear seat is not likely to 
    be in a position to contact SR3. In addition, NHTSA's analysis of 1992-
    1996 NASS, rollover/non-ejection data indicates that the head/face of 
    719 second-seat occupants, including 154 children of 10 years of age or 
    younger, contacted the rear side rails resulting in five AIS-1 or 
    greater head/face injuries, including one AIS-5 or greater injury and 
    that no child of 10 years of age or younger sustained any head/face 
    injury. It appears that the Advocates' comment that excluding SR3 will 
    result in greater injuries to children is not borne out by data on real 
    world crashes.
    
    [[Page 41462]]
    
        With respect to out-of-position child problems, the agency does not 
    have its own studies and relies, at present, on the manufacturers' test 
    data to evaluate the problem. Based on the comments from Volvo, BMW and 
    AORC, it appears that out-of-position occupants, including children and 
    adults, would not be placed at risk by dynamically deployed upper 
    interior head protection systems. The agency notes that side air bags 
    and dynamically deployed upper interior head protection systems are 
    relatively small and less aggressive compared to front passenger air 
    bags, and that the design of these systems has benefitted from the 
    experience gained from frontal air bag systems. However, the agency 
    will continue to monitor and test dynamically deployed upper interior 
    head protection systems as they become available.
        NHTSA has also concluded that dynamically deployed upper interior 
    head protection systems would not present a risk of additional neck 
    injuries. The results of the BMW 528i car-to-pole tests conducted at 
    IIHS indicated that dummy neck loads in the test with the ITS system 
    are either lower than, or at least remain approximately the same as 
    those in the baseline test without the ITS system. In view of this, 
    NHTSA concludes that despite the concerns voiced by Advocates, the ITS 
    system or the IC system is not likely to increase the risk of neck 
    injury. However, the agency agrees with AAMA that further exploration 
    of the risk of neck injury should be conducted. With respect to 
    potential auditory system injury, the existing data are not sufficient 
    for NHTSA to explore the issue at this time. The agency notes that the 
    SAE is currently studying the problem of air bag noise. At this time, 
    NHTSA is declining to incorporate any limits relating to auditory 
    injury in the final rule, but will continue to monitor air bag data and 
    study occupant injuries.
    
    I. Other Issues
    
        Several commenters also asked that certain issues in the proposal 
    be explained or clarified. Volvo requested the agency to more fully 
    define those target points contiguous to the system's mounting and 
    inflation components subject to the 24 km/h (15 mph) impact. AAMA 
    requested that S6.1 (b) and (c) be redrafted or explained as it 
    believed that these sentences are incomplete. The organization also 
    asked for clarification of S8.13.3 concerning the exclusion of the 
    initial FMH forehead-to-target contact found in Option 1 when testing a 
    deployed system under proposed Option 2. VW commented that testing 
    laboratory contractors must confirm target locations and impact speeds 
    with manufacturers before conducting the test.
        With respect to Volvo's comments requesting clarification of target 
    points subject to the 24 km/h (15 mph) impact, the final rule excludes 
    target points that are within the 50 mm (2.0 inch) areas surrounding 
    the stowed system including its mounting and inflation units. This 
    change from the Option 3 proposal should address Volvo's concern. With 
    respect to the AAMA's concern on the text of S6.1 (b) and (c) and S6.2 
    (b) and (c), NHTSA has redrafted and reorganized the text of the 
    section in order to clarify them. With respect to AAMA's comment 
    regarding excluding initial FMH forehead-to-target contact (S8.13.3) in 
    testing the deployed system, clarification of S8.13.3 is not needed 
    because the Option 2 test procedure has been removed from the final 
    rule. NHTSA disagrees with VW's position that a NHTSA testing 
    contractor should confirm target locations and impact speed before 
    conducting a compliance test. It is NHTSA's position that such a 
    procedure would provide manufacturers with too much control over 
    compliance testing. As with other safety standards, if any information 
    is needed prior to a compliance test, NHTSA will ask for, and 
    manufacturers will provide, that information.
        Advocates commented that the data used by NHTSA to justify the 19 
    km/h (12 mph) FMH impact test were not available for public review and 
    that the administrative record of the NPRM does not support the 
    reduction of the FMH impact speed from 24 km/h to 19 km/h (15 mph to 12 
    mph) for target points that are located over a stowed system. Advocates 
    also commented that since no sensor design specification is given to 
    ensure the sensor performance, the number of severe injuries due to 
    sensor malfunction may be considerably larger than the agency's 
    expectation. In addition, Advocates questioned the validity of the 
    agency's benefit analysis because it was based on the ITS sled tests 
    generated by manufacturers and because not a single ITS test was 
    conducted simulating rollover crashes. Advocates further stated that it 
    is improper for NHTSA to argue for or rely on anti-ejection benefits 
    that have not been tested. Both AAMA and Advocates raised questions on 
    the potential risk of neck injury and urged that the topics be entered 
    on the agenda of the Motor Vehicle Safety Research Advisory Committee 
    and the program of International Harmonization Research Agenda. AAMA 
    also raised questions on the potential risk of other injuries such as 
    auditory system injuries and other injuries related to the system 
    deployment.
        NHTSA does not agree with allegation made by Advocates regarding 
    the administrative record and justification for the reduction of FMH 
    impact speed from 24 km/h to 19 km/h (15 mph to 12 mph) for targets 
    located over the stowed system. The BMW test data, although 
    confidential, were used by the agency to justify the reduction of FMH 
    impact speed. NHTSA believes that an adequate explanation of this data, 
    given in the PRE supporting the NPRM, exists in the administrative 
    record of this rulemaking. The safety benefit analysis by K. Digges & 
    Associates, recently submitted by BMW in its comments to the NPRM, 
    provides further justification on the subject.
        Advocates questioned the validity of the agency's benefit analysis 
    because the analysis was based on ITS performance in manufacturer-
    generated sled tests, the ejection prevention capability of the ITS was 
    projected without testing, and the proposed rule did not contain 
    specifications for sensor performance. With respect to the validity of 
    the BMW sled test data, NHTSA observes that the agency's safety benefit 
    estimate was based on all available data, including crash test data and 
    sled test data. While NHTSA recognizes the limitations of sled tests, 
    the agency believes that sled tests can be a useful tool for the 
    development of safety countermeasures and are valid in this instance. 
    With respect to the projections regarding ejection mitigation, NHTSA 
    notes that it is true that neither the agency nor any manufacturers had 
    conducted any rollover tests using the ITS system prior to issuance of 
    the NPRM. However, the agency examined the limited rollover test data 
    and the real world crash data and, relying on its judgment and 
    experience, made an appropriate benefit estimate in support of the 
    NPRM. At present, the agency has completed three rollover tests at 48.3 
    km/h (30 mph) using the Standard 208 rollover cart. The test vehicles 
    were Ford Explorers equipped with several different ITS designs. In 
    each test, two Hybrid III dummies were seated in the outboard front 
    seating positions. All dummies, except one right front seat passenger 
    dummy, were unbelted. The test results showed that head ejections and 
    complete ejections through side windows did not occur and that five out 
    of the six test dummies had their hands/arms outside the windows after 
    those rollover tests. These test results support the agency's 
    assumption that the ITS system would greatly reduce the side window 
    ejection casualties. In addition,
    
    [[Page 41463]]
    
    a recent safety benefit analysis by K. Digges & Associates provides 
    further information on the subject. Based on those recent studies, it 
    is concluded that the ITS and similar head protection systems will 
    reduce side window ejections. However, the agency will continue 
    investigation on this subject.
        With respect to the lack of sensor specifications in the proposed 
    rule, NHTSA believes that such specifications are not required. The 
    agency notes that it did not issue a sensor specification for the 
    frontal air bag systems and that manufacturers have gained considerable 
    field experience in sensor designs since the introduction of the air 
    bag systems nearly 10 years ago. In addition, many manufacturers have 
    already installed side air bags in their production cars. In view of 
    this, it appears that a sensor specification would be superfluous.
    
    J. Dummy Seating Position
    
        Agency testing has revealed that the dummy seating position 
    proposed in the NPRM would result in interference between the B-pillar 
    and the head of the test dummy in certain vehicles. Therefore, the 
    final rule modifies the seating position to further increase the chance 
    that a 2-inch head/window frame clearance will exist between the dummy 
    head and the forward edge of the B-pillar/door window frame 
    combination. Accordingly, S8.28 has been modified to specify that in 
    those instances where the seating procedure and seat position 
    procedures of S6.3, S6.4 and S7 of Standard 214 result in the back of 
    the dummy head being less than 50 mm (2 inches) forward of the front 
    edge of the B-pillar/door window frame combination, the seat is to be 
    further adjusted to achieve the desired clearance. The first specified 
    adjustment is to move the seatback forward a maximum of five degrees. 
    If this does not result in sufficient clearance, the seat itself is to 
    be moved forward until clearance is obtained or interference occurs 
    between the dummy's knees and the dashboard or knee bolster. If forward 
    adjustment of the seat does not produce the desired clearance, the seat 
    back is adjusted again until clearance is obtained or until the seat is 
    in its full upright locking position.
    
    K. Selection of Options
    
        NHTSA notes that, where a safety standard provides manufacturers 
    more than one compliance option, the agency needs to know which option 
    has been selected in order to conduct a compliance test. The agency is 
    aware that a manufacturer confronted with an apparent noncompliance for 
    the option it has selected (based on a compliance test) may argue that 
    its vehicles would comply with a different option for which the agency 
    has not conducted a compliance test. This could create difficulties in 
    assessing the vehicle's compliance.
        To address this problem, the proposed rule stated that 
    manufacturers must select a test option prior to, or at the time of, 
    certification. NHTSA did not receive any comments on this proposed 
    provision. The final rule requires that where manufacturer options are 
    specified, the manufacturer must select the option by the time it 
    certifies the vehicle and may not thereafter select a different option. 
    This will mean that failure to comply with the selected option will 
    constitute a noncompliance with the standard regardless of whether a 
    vehicle complies with another option.
    
    L. Effective Date
    
        Volvo and BMW commented that the final rule should be issued by 
    March 1998 and become effective 30 days after its issuance. VW 
    commented that the final rule should be issued as soon as possible with 
    an immediate effective date. In the NPRM, the agency proposed that the 
    final rule become effective 30 days after publication to facilitate the 
    early introduction of dynamic systems that may be in an advanced stage 
    of development or actually in production. However, NHTSA notes that the 
    changes incorporated into the final rule are intended to allow the 
    introduction of dynamic systems and more conventional countermeasures 
    needed to meet the head impact protection requirements. As the phase-in 
    of the head impact protection requirements begins on September 1, 1998, 
    the agency notes that it is not legally necessary to establish an 
    earlier effective date in order for manufacturers to take advantage of 
    the amendments made by this final rule. Accordingly, the effective date 
    of the amendments is September 1, 1998. NHTSA is aware, however, that 
    production of vehicles with dynamic systems began prior to the 
    effective date of the final rule and is allowing manufacturers of such 
    vehicles to include them in their calculation of complying vehicles 
    under S6.1.5 if such vehicles meet the requirements of S6.1(b) as 
    promulgated in the final rule.
    
    III. Rulemaking Analyses and Notices
    
    A. Executive Order 12866 and DOT Regulatory Policies and Procedures
    
        NHTSA has considered the impact of this final rule under E.O. 12866 
    and the Department of Transportation's regulatory policies and 
    procedures. This rule was not reviewed under E.O. 12866, ``Regulatory 
    Planning and Review'' and is not considered significant under the 
    Department of Transportation's regulatory policies and procedures.
        The agency has prepared a Final Regulatory Evaluation describing 
    the economic and other effects of this rulemaking action. For persons 
    wishing to examine the full analysis, a copy is being placed in the 
    docket.
    
    B. Regulatory Flexibility Act
    
        NHTSA has also considered the effects of this final rule under the 
    Regulatory Flexibility Act. I hereby certify that it will not have a 
    significant economic impact on a substantial number of small entities. 
    While the cost of new passenger cars or light trucks equipped with 
    dynamically deployed upper interior head protection systems will be 
    slightly increased by the amendments, the rule establishes optional 
    test procedures which manufacturers need only use in the event they 
    equip their vehicles with a dynamically deployed head impact protection 
    system. Further, the amendments primarily affect passenger car and 
    light truck manufacturers which are not small entities under 5 U.S.C. 
    Sec. 605(b). The Small Business Administration's regulations at 13 CFR 
    Part 121 define a small business, in part, as a business entity ``which 
    operates primarily within the United States.'' (13 CFR 
    Sec. 121.105(a)). The agency estimates that there are at most five 
    small final stage manufacturers of passenger cars in the U.S. and no 
    small manufacturers of light trucks, producing a combined total of at 
    most 500 cars each year.
        The primary effect of the final rule will be on manufacturers of 
    passenger cars and LTVs. If LTVs are produced with these systems some 
    time in the future and provided as incomplete vehicles to final stage 
    manufacturers, which are generally small businesses, these final stage 
    manufacturers may have to certify compliance. However, as noted above, 
    the amendments in this final rule do not impose any additional 
    mandatory requirements that all manufacturers or final stage 
    manufacturers must meet. Instead, these amendments provide a means for 
    evaluating advanced dynamically deployed upper interior head protection 
    systems where manufacturers choose to install them.
        Manufacturer associations could also sponsor generic tests to 
    determine the amount and type of padding or design of dynamic system 
    needed for basic structures that will be used by a number of final 
    stage manufacturers, to reduce
    
    [[Page 41464]]
    
    certification costs. Final stage manufacturers may also avoid any 
    additional certification or compliance costs by relying on the 
    certification provided by the manufacturer of the incomplete vehicle.
        Other entities which qualify as small businesses, small 
    organizations and governmental units will be affected by this rule to 
    the extent that they purchase passenger cars and LTVs. They will not be 
    significantly affected, since the potential cost increases associated 
    with this action should only slightly affect the purchase price of new 
    motor vehicles.
    
    C. National Environmental Policy Act
    
        NHTSA has analyzed this rulemaking action for the purposes of the 
    National Environmental Policy Act. The agency has determined that 
    implementation of this action will not have any significant impact on 
    the quality of the human environment.
    
    D. Executive Order 12612 (Federalism) and Unfunded Mandates Act
    
        The agency has analyzed this rulemaking action in accordance with 
    the principles and criteria set forth in Executive Order 12612. NHTSA 
    has determined that the amendment does not have sufficient federalism 
    implications to warrant the preparation of a Federalism Assessment.
        In issuing this final rule to permit optional testing to 
    accommodate dynamic head protections systems, the agency notes, for the 
    purposes of the Unfunded Mandates Act, that it is pursuing the least 
    cost alternative. As noted above, any manufacturer may choose one of 
    two options to test for compliance with Standard 201, including the 
    test procedure established in the August 18, 1995 final rule. As this 
    rulemaking does not require manufacturers to meet new minimum 
    performance requirements but sets minimum performance criteria for 
    optional systems, it does not impose new costs.
    
    E. Civil Justice Reform
    
        This amendment does not have any retroactive effect. Under 49 
    U.S.C. 21403, whenever a Federal motor vehicle safety standard is in 
    effect, a State may not adopt or maintain a safety standard applicable 
    to the same aspect of performance which is not identical to the Federal 
    standard, except to the extent that the state requirement imposes a 
    higher level of performance and applies only to vehicles procured for 
    the State's use. 49 U.S.C. 21461 sets forth a procedure for judicial 
    review of final rules establishing, amending or revoking Federal motor 
    vehicle safety standards. That section does not require submission of a 
    petition for reconsideration or other administrative proceedings before 
    parties may file suit in court.
    
    List of Subjects in 49 CFR Part 571
    
        Imports, Motor vehicle safety, Motor vehicles, Rubber and rubber 
    products, Tires.
        In consideration of the foregoing, 49 CFR part 571 is amended as 
    follows:
    
    PART 571.201--[AMENDED]
    
        1. The authority citation for part 571 continues to read as 
    follows:
    
        Authority: 49 U.S.C. 322, 30111, 30115, 30117, and 30166; 
    delegation of authority at 49 CFR 1.50.
    
        2. Section 571.201 is amended by adding a definition of Dynamically 
    Deployed Upper Interior Head Protection System to S3, revising S6.1, 
    S6.2, S7, and S8.13.3 and by adding S8.16 through S8.28 as follows:
    
    
    Sec. 571.201  Standard No. 201; Occupant protection in interior impact.
    
    * * * * *
        S3.  Definitions.
    * * * * *
        Dynamically deployed upper interior head protection system means a 
    protective device or devices which are integrated into a vehicle and 
    which, when activated by an impact, provide, through means requiring no 
    action from occupants, protection against head impacts with upper 
    interior structures and components of the vehicle in crashes.
    * * * * *
        S6.1  Vehicles manufactured on or after September 1, 1998 and 
    before September 1, 2002. Except as provided in S6.3, for vehicles 
    manufactured on or after September 1, 1998 and before September 1, 
    2002, a percentage of the manufacturer's production, as specified in 
    S6.1.1, S6.1.2, S6.1.3, or S6.1.4, shall conform, at the manufacturer's 
    option, to either S6.1(a) or S6.1(b). The manufacturer shall select the 
    option by the time it certifies the vehicle and may not thereafter 
    select a different option for the vehicle.
        (a) When tested under the conditions of S8, comply with the 
    requirements specified in S7 at the target locations specified in S10 
    when impacted by the free motion headform specified in S8.9 at any 
    speed up to and including 24 km/h (15 mph). The requirements do not 
    apply to any target that cannot be located using the procedures of S10.
        (b) When equipped with a dynamically deployed upper interior head 
    protection system and tested under the conditions of S8, comply with 
    the requirements specified in S7 at the target locations specified in 
    S10 as follows:
        (1) Targets that are not located over any point inside the area 
    measured along the contour of the vehicle surface within 50 mm (2.0 
    inch) of the periphery of the stowed system projected perpendicularly 
    onto the vehicle interior surface, including mounting and inflation 
    components but exclusive of any cover or covers, shall be impacted by 
    the free motion headform specified in S8.9 at any speed up to and 
    including 24 km/h (15 mph). The requirements do not apply to any 
    targets that can not be located by using the procedures of S10.
        (2) Targets that are over any point inside the area measured along 
    the contour of the vehicle interior within 50 mm (2.0 inch) of the 
    periphery of the stowed system projected perpendicularly onto the 
    vehicle interior surface, including mounting and inflation components 
    but exclusive of any cover or covers, when the dynamically deployed 
    upper interior head protection system is not deployed, shall be 
    impacted by the free motion headform specified in S8.9 at any speed up 
    to and including 19 km/h (12 mph) with the system undeployed. The 
    requirements do not apply to any target that can not be located using 
    the procedures of S10.
        (3) Each vehicle shall, when equipped with a dummy test device 
    specified in part 572, subpart M, and tested as specified in S8.16 
    through S8.28, comply with the requirements specified in S7 when 
    crashed into a fixed, rigid pole of 254 mm in diameter, at any velocity 
    up to and including 29 kilometers per hour (18 mph).
    * * * * *
        S6.2  Vehicles manufactured on or after September 1, 2002. Except 
    as provided in S6.3, vehicles manufactured on or after September 1, 
    2002 shall, when tested under the conditions of S8, conform, at the 
    manufacturer's option, to either S6.2(a) or S6.2(b). The manufacturer 
    shall select the option by the time it certifies the vehicle and may 
    not thereafter select a different option for the vehicle.
        (a) When tested under the conditions of S8, comply with the 
    requirements specified in S7 at the target locations specified in S10 
    when impacted by the free motion headform specified in S8.9 at any 
    speed up to and including 24 km/h (15 mph). The requirements do not 
    apply to any target that cannot be located using the procedures of S10.
    
    [[Page 41465]]
    
        (b) When equipped with a dynamically deployed upper interior head 
    protection system and tested under the conditions of S8, comply with 
    the requirements specified in S7 at the target locations specified in 
    S10 as follows:
        (1) Targets that are not located over any point inside the area 
    measured along the contour of the vehicle surface within 50 mm (2.0 
    inch) of the periphery of the stowed system projected perpendicularly 
    onto the vehicle interior surface, including mounting and inflation 
    components but exclusive of any cover or covers, shall be impacted by 
    the free motion headform specified in S8.9 at any speed up to and 
    including 24 km/h (15 mph). The requirements do not apply to any 
    targets that cannot be located by using the procedures of S10.
        (2) Targets that are over any point inside the area measured along 
    the contour of the vehicle interior within 50 mm (2.0 inch) of the 
    periphery of the stowed system projected perpendicularly onto the 
    vehicle interior surface, including mounting and inflation components 
    but exclusive of any cover or covers, when the dynamically deployed 
    upper interior head protection system is not deployed, shall be 
    impacted by the free motion headform specified in S8.9 at any speed up 
    to and including 19 km/h (12 mph) with the system undeployed. The 
    requirements do not apply to any target that cannot be located using 
    the procedures of S10.
        (3) Each vehicle shall, when equipped with a dummy test device 
    specified in part 572, subpart M, and tested as specified in S8.16 
    through S8.28, comply with the requirements specified in S7 when 
    crashed into a fixed, rigid pole of 254 mm in diameter, at any velocity 
    up to and including 29 kilometers per hour (18 mph).
    * * * * *
        S7  Performance Criterion. The HIC(d) shall not exceed 1000 when 
    calculated in accordance with the following formula:
    [GRAPHIC] [TIFF OMITTED] TR04AU98.002
    
    Where the term a is the resultant head acceleration expressed as a 
    multiple of g (the acceleration of gravity), and t1 and t2 are any two 
    points in time during the impact which are separated by not more than a 
    36 millisecond time interval.
        (a) For the free motion headform; HIC(d)=0.75446 (free motion 
    headform HIC)+166.4.
        (b) For the part 572, subpart M, anthropomorphic test dummy; 
    HIC(d)=HIC.
        S8  Target location and test conditions.
    * * * * *
        S8.13  Impact configuration.
    * * * * *
        S8.13.3  At the time of initial contact between the headform and 
    the vehicle interior surface, some portion of the forehead impact zone 
    of the headform must contact some portion of the target circle.
    * * * * *
        S8.16  Test weight--vehicle to pole test. Each vehicle shall be 
    loaded to its unloaded vehicle weight, plus 136 kilograms (300 pounds) 
    or its rated cargo and luggage capacity (whichever is less), secured in 
    the luggage or load-carrying area, plus the weight of the necessary 
    anthropomorphic test dummy. Any added test equipment shall be located 
    away from impact areas in secure places in the vehicle.
        S8.17  Vehicle test attitude--vehicle to pole test. Determine the 
    distance between a level surface and a standard reference point on the 
    test vehicle's body, directly above each wheel opening, when the 
    vehicle is in its ``as delivered'' condition. The ``as delivered'' 
    condition is the vehicle as received at the test site, filled to 100 
    percent of all fluid capacities and with all tires inflated to the 
    manufacturer's specifications listed on the vehicle's tire placard. 
    Determine the distance between the same level surface and the same 
    standard reference points in the vehicle's ``fully loaded condition.'' 
    The ``fully loaded condition'' is the test vehicle loaded in accordance 
    with S8.16. The load placed in the cargo area shall be centered over 
    the longitudinal centerline of the vehicle. The pretest vehicle 
    attitude shall be the same as either the ``as delivered'' or ``fully 
    loaded'' attitude or is between the ``as delivered'' attitude and the 
    ``fully loaded'' attitude. If the test configuration requires that the 
    vehicle be elevated off the ground, the pretest vehicle attitude must 
    be maintained.
        S8.18  Adjustable seats--vehicle to pole test. Initially, 
    adjustable seats shall be adjusted as specified in S6.3 of Standard 214 
    (49 CFR 571.214).
        S8.19  Adjustable seat back placement--vehicle to pole test. 
    Initially, position adjustable seat backs in the manner specified in 
    S6.4 of Standard 214 (49 CFR 571.214).
        S8.20  Adjustable steering wheels--vehicle to pole test. Adjustable 
    steering controls shall be adjusted so that the steering wheel hub is 
    at the geometric center of the locus it describes when it is moved 
    through its full range of driving positions.
        S8.21  Windows and sunroof--vehicle to pole test. Movable windows 
    and vents shall be placed in the fully open position. Any sunroof shall 
    be placed in the fully closed position.
        S8.22  Convertible tops--vehicle to pole test. The top, if any, of 
    convertibles and open-body type vehicles shall be in the closed 
    passenger compartment configuration.
        S8.23  Doors--vehicle to pole test. Doors, including any rear 
    hatchback or tailgate, shall be fully closed and latched but not 
    locked.
        S8.24  Impact reference line--vehicle to pole test. On the striking 
    side of the vehicle, place an impact reference line at the intersection 
    of the vehicle exterior and a transverse vertical plane passing through 
    the center of gravity of the head of the dummy seated in accordance 
    with S8.28, in the front outboard designated seating position.
        S8.25  Rigid Pole--vehicle to pole test. The rigid pole is a 
    vertical metal structure beginning no more than 102 millimeters (4 
    inches) above the lowest point of the tires on the striking side of the 
    test vehicle when the vehicle is loaded as specified in S8.16 and 
    extending above the highest point of the roof of the test vehicle. The 
    pole is 254 mm 3 mm (10 inches) in diameter and set off 
    from any mounting surface, such as a barrier or other structure, so 
    that the test vehicle will not contact such a mount or support at any 
    time within 100 milliseconds of the initiation of vehicle to pole 
    contact.
        S8.26  Impact configuration--vehicle to pole test. The rigid pole 
    shall be stationary. The test vehicle shall be propelled sideways so 
    that its line of forward motion forms an angle of 90 degrees 
    (3 degrees) with the vehicle's longitudinal center line. 
    The impact reference line shall be aligned with the center line of the 
    rigid pole so that, when the vehicle-to-pole contact occurs, the center 
    line of the pole contacts the vehicle area bounded by two transverse 
    vertical planes 38 mm (1.5 inches) forward and aft of the impact 
    reference line.
        S8.27  Anthropomorphic test dummy--vehicle to pole test. 
        S8.27.1  The anthropomorphic test dummy used for evaluation of a 
    vehicle's head impact protection shall conform to the requirements of 
    subpart M of part 572 of this chapter (49 CFR part 572, subpart M). In 
    a test in which the test vehicle is striking its left side, the dummy 
    is to be configured and instrumented to strike on its left side, in 
    accordance with subpart M of part 572.
    
    [[Page 41466]]
    
    In a test in which the test vehicle is striking its right side, the 
    dummy is to be configured and instrumented to strike its right side, in 
    accordance with subpart M of part 572.
        S8.27.2  The part 572, subpart M, test dummy specified is clothed 
    in form fitting cotton stretch garments with short sleeves and midcalf 
    length pants. Each foot of the test dummy is equipped with a size 11EEE 
    shoe, which meets the configuration size, sole, and heel thickness 
    specifications of MIL-S-13192 (1976) and weighs 0.57 0.09 
    kilograms (1.25 0.2 pounds).
        S8.27.3  Limb joints shall be set at between 1 and 2 g's. Leg 
    joints are adjusted with the torso in the supine position.
        S8.27.4  The stabilized temperature of the test dummy at the time 
    of the side impact test shall be at any temperature between 20.6 
    degrees C. and 22.2 degrees C., and at any relative humidity between 10 
    percent and 70 percent.
        S8.27.5  The acceleration data from the accelerometers installed 
    inside the skull cavity of the test dummy are processed according to 
    the practices set forth in SAE Recommended Practice J211, March 1995, 
    ``Instrumentation for Impact Tests,'' Class 1000.
        S8.28  Positioning procedure for the Part 572 Subpart M Test 
    Dummy--vehicle to pole test. The part 572, subpart M, test dummy shall 
    be initially positioned in the front outboard seating position on the 
    struck side of the vehicle in accordance with the provisions of S7 of 
    Standard 214, 49 CFR 571.214, and the vehicle seat shall be positioned 
    as specified in S6.3 and S6.4 of that standard. The position of the 
    dummy shall then be measured as follows. Locate the horizontal plane 
    passing through the dummy head center of gravity. Identify the rearmost 
    point on the dummy head in that plane. Construct a line in the plane 
    that contains the rearward point of the front door daylight opening and 
    is perpendicular to the longitudinal vehicle centerline. Measure the 
    longitudinal distance between the rearmost point on the dummy head and 
    this line. If this distance is less than 50 mm (2 inches) or the point 
    is not forward of the line, then the seat and/or dummy positions shall 
    be adjusted as follows. First, the seat back angle is adjusted, a 
    maximum of 5 degrees, until a 50 mm (2 inches) distance is achieved. If 
    this is not sufficient to produce the 50 mm (2 inches) distance, the 
    seat is moved forward until the 50 mm (2 inches) distance is achieved 
    or until the knees of the dummy contact the dashboard or knee bolster, 
    whichever comes first. If the required distance cannot be achieved 
    through movement of the seat, the seat back angle shall be adjusted 
    even further forward until the 50mm (2 inches) distance is obtained or 
    until the seat back is in its full upright locking position.
    * * * * *
        Issued on July 29, 1998.
    Ricardo Martinez,
    Administrator.
    [FR Doc. 98-20700 Filed 7-30-98; 3:39 pm]
    BILLING CODE 4910-59-P
    
    
    

Document Information

Published:
08/04/1998
Department:
National Highway Traffic Safety Administration
Entry Type:
Rule
Action:
Final rule.
Document Number:
98-20700
Pages:
41451-41466 (16 pages)
Docket Numbers:
Docket No. NHTSA-98-3847
RINs:
2127-AG07: Federal Motor Vehicle Safety Standards: Head Impact Protection
RIN Links:
https://www.federalregister.gov/regulations/2127-AG07/federal-motor-vehicle-safety-standards-head-impact-protection
PDF File:
98-20700.pdf
CFR: (2)
49 CFR 121.105(a))
49 CFR 571.201