2021-27272. Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to Geophysical Surveys in the Southeastern Gulf of Mexico  

  • Start Preamble

    AGENCY:

    National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

    ACTION:

    Notice; proposed incidental harassment authorization; request for comments on proposed authorization and possible renewal.

    SUMMARY:

    NMFS has received a request from Scripps Institution of Oceanography (Scripps) for authorization to take marine mammals incidental to marine geophysical surveys in the southeastern Gulf of Mexico. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on its proposal to issue an incidental harassment authorization (IHA) to incidentally take marine mammals during the specified activities. NMFS is also requesting comments on a possible 1 year renewal that could be issued under certain circumstances and if all requirements are met, as described in Request for Public Comments at the end of this notice. NMFS will consider public comments prior to making any final decision on the issuance of the requested MMPA authorizations and agency responses will be summarized in the final notice of our decision.

    DATES:

    Comments and information must be received no later than January 18, 2022.

    ADDRESSES:

    Comments should be addressed to Jolie Harrison, Chief, Permits and Conservation Division, Office of Protected Resources, National Marine Fisheries Service and should be submitted via email to ITP.Fowler@noaa.gov.

    Instructions: NMFS is not responsible for comments sent by any other method, to any other address or individual, or received after the end of the comment period. Comments, including all attachments, must not exceed a 25-megabyte file size. All comments received are a part of the public record and will generally be posted online at www.fisheries.noaa.gov/​permit/​incidental-take-authorizations-under-marine-mammal-protection-act without change. All personal identifying information ( e.g., name, address) voluntarily submitted by the commenter may be publicly accessible. Do not submit confidential business information or otherwise sensitive or protected information.

    Start Further Info

    FOR FURTHER INFORMATION CONTACT:

    Amy Fowler, Office of Protected Resources, NMFS, (301) 427-8401. Electronic copies of the application and supporting documents, as well as a list of the references cited in this document, may be obtained online at: https://www.fisheries.noaa.gov/​permit/​incidental-take-authorizations-under-marine-mammal-protection-act. In case of problems accessing these documents, please call the contact listed above.

    End Further Info End Preamble Start Supplemental Information

    SUPPLEMENTARY INFORMATION:

    Background

    The MMPA prohibits the “take” of marine mammals, with certain exceptions. Sections 101(a)(5)(A) and (D) of the MMPA (16 U.S.C. 1361 et seq. ) direct the Secretary of Commerce (as delegated to NMFS) to allow, upon request, the incidental, but not intentional, taking of small numbers of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within a specified geographical region if certain findings are made and either regulations are issued or, if the taking is limited to harassment, a notice of a proposed incidental take authorization may be provided to the public for review.

    Authorization for incidental takings shall be granted if NMFS finds that the taking will have a negligible impact on the species or stock(s) and will not have an unmitigable adverse impact on the availability of the species or stock(s) for taking for subsistence uses (where relevant). Further, NMFS must prescribe the permissible methods of taking and other “means of effecting the least practicable adverse impact” on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stocks for taking for certain subsistence uses (referred to in shorthand as “mitigation”); and requirements pertaining to the mitigation, monitoring and reporting of the takings are set forth.

    The definitions of all applicable MMPA statutory terms cited above are included in the relevant sections below.

    National Environmental Policy Act

    To comply with the National Environmental Policy Act of 1969 (NEPA; 42 U.S.C. 4321 et seq. ) and NOAA Administrative Order (NAO) Start Printed Page 71428 216-6A, NMFS must review our proposed action ( i.e., the issuance of an incidental harassment authorization) with respect to potential impacts on the human environment.

    This action is consistent with categories of activities identified in Categorical Exclusion B4 (incidental harassment authorizations with no anticipated serious injury or mortality) of the Companion Manual for NOAA Administrative Order 216-6A, which do not individually or cumulatively have the potential for significant impacts on the quality of the human environment and for which we have not identified any extraordinary circumstances that would preclude this categorical exclusion. Accordingly, NMFS has preliminarily determined that the issuance of the proposed IHA qualifies to be categorically excluded from further NEPA review.

    We will review all comments submitted in response to this notice prior to concluding our NEPA process or making a final decision on the IHA request.

    Summary of Request

    On March 17, 2020, NMFS received a request from Scripps for an IHA to take marine mammals incidental to low-energy geophysical surveys in the southeastern Gulf of Mexico, initially planned to occur in summer 2020. The application was deemed adequate and complete on May 26, 2020. On June 9, 2020, Scripps notified NMFS that the proposed survey had been postponed and tentatively rescheduled for summer 2021. On April 8, 2021, Scripps notified NMFS that the survey had been further postponed and is now proposed to occur in July-August 2022. NMFS has reviewed recent draft Stock Assessment Reports and other scientific literature, and determined that neither this nor any other new information affects which species or stocks have the potential to be affected, the potential effects to marine mammals and their habitat as described in the IHA application, or any other aspect of the analysis. Therefore, NMFS has determined that Scripps' IHA application remains adequate and complete. Scripps' request is for take of 20 species of marine mammals by Level B harassment only. Neither Scripps nor NMFS expects serious injury or mortality to result from this activity and, therefore, an IHA is appropriate.

    Description of Proposed Activity

    Overview

    Scripps plans to support a research project that would involve low-energy seismic surveys in the Gulf of Mexico during summer 2022. The study would be conducted on the R/V Justo Sierra, owned by Universidad Nacional Autónoma de México (UNAM), using a portable multi-channel seismic (MCS) system operated by marine technicians from Scripps. The survey would use a pair of low-energy Generator-Injector (GI) airguns with a total discharge volume of 90 cubic inches (in3 ). The surveys would take place within the Exclusive Economic Zones (EEZs) of Mexico and Cuba in the southeastern Gulf of Mexico.

    Dates and Duration

    The specific dates of the survey have not been determined but the cruise is expected to occur in July to August 2022. The proposed research cruise is expected to consist of 15 days at sea, including ~12 days of seismic operations (10 planned days and 2 contingency days) and ~3 days of transit. R/V Justo Sierra would depart from Tampamochaco, Mexico and return to Progreso, Mexico after the program is completed.

    Specific Geographic Region

    The proposed surveys would take place in the Gulf of Mexico between ~22°-25° N and 83.8°-88° W (see Figure 1). Seismic acquisition would occur in two primary survey areas. The Yucatán Channel survey area is located in the deep-water channel between the Campeche and Florida escarpments, within the EEZ of Cuba in water depths ranging from ~1,500 to 3,600 meters (m; 4,921 to 11,811 feet (ft)). The Campeche Bank survey area is located in the northeastern flank of the Campeche escarpment, within the EEZs of Cuba and Mexico in waters ranging in depth from ~110 to 3,000 m (361 to 9,843 ft).

    Start Printed Page 71429

    Detailed Description of Specific Activity

    The proposed project consists of low-energy seismic surveys to image sediment drifts along Campeche Bank and in the deep water north of Yucatán Channel in order to reconstruct bottom water current changes through the Cenozoic era. Data collected would also be used to inform potential future site locations for the International Ocean Discovery Program (IODP). To achieve the program's goals, researchers from UNAM and the University of Texas Institute of Geophysics (UTIG) propose to collect low-energy, high-resolution MCS profiles.

    The surveys would involve one source vessel, the R/V Justo Sierra, using the portable MCS system operated by marine technicians from Scripps. R/V Justo Sierra would deploy up to two 45-in3 GI airguns as an energy source with a maximum total discharge volume of ~90 in3 . The generator chamber of each GI gun, the one responsible for introducing the sound pulse into the ocean, is 45 in3 . The larger (105 in3 ) injector chamber injects air into the previously generated bubble to maintain its shape and does not introduce more sound into the water. The two 45-in3 GI airguns would be spaced 2 m (6.6 ft) apart, and towed 25 m (82 ft) behind the R/V Justo Sierra at a depth of 2-4 m (6.6-13.1 ft). An operational speed of ~7.4-9.3 kilometers (km) per hour (~4-5 knots) would be used during seismic acquisition, and seismic pulses would be emitted at intervals of 8-10 seconds from the GI airguns. The receiving system would consist of one hydrophone streamer, 1,500 m (4,921 ft) in length. As the airguns are towed along the survey lines, the hydrophone streamer would receive the returning acoustic signals and transfer the data to the on-board processing system.

    The proposed cruise would acquire ~2,171 km (~1,349 miles) of seismic data in the southeastern Gulf of Mexico. All survey effort proposed in the Yucatán Channel survey area would occur in water >1,000 m (3,281 ft) deep. In the Campeche Bank survey area, approximately 80 percent of survey effort would occur in deep water, and 20 percent would occur in intermediate water 100-1,000 m (328-3,281 ft) deep. No survey effort is proposed in waters less than 100 m (328 ft) deep.

    In the Yucatán Channel survey area, a grid is proposed that consists of southwest-northeast trending strike profiles with crossing dip profiles to provide images of the deep water connection between the Straits of Florida and the basinal southeastern Gulf of Mexico (see Figure 1). In the Campeche Bank survey area, several long dip profiles would be acquired that are connected by several strike lines. The survey area also includes three proposed sites for future IODP coring (one in the Campeche Bank survey area and two within the Yucatán Channel survey area, all within the EEZ of Cuba). Around each site, an additional survey of a single 5 km by 5 km (3.1 by 3.1 miles) box would be conducted around the proposed site to better characterize the sediments and provide a number of options to choose the ideal location for proposed future drilling.

    A hull-mounted multi-beam echosounder (MBES) and an Acoustic Doppler Current Profiler (ADCP) would also be operated from the R/V Justo Sierra continuously throughout the seismic surveys, but not during transits or and from the survey area or when airguns are not operating. All planned geophysical data acquisition activities would be conducted by Scripps and UNAM with on-board assistance by the scientists who have proposed the studies. The vessel would be self-contained, and the crew would live aboard the vessel. Take of marine mammals is not expected to occur incidental to use of the MBES or ADCP because, whether or not the airguns are Start Printed Page 71430 operating simultaneously with the other sources, given their characteristics ( e.g., narrow downward-directed beam), marine mammals would experience no more than one or two brief ping exposures, if any exposure were to occur. NMFS does not expect that use of these sources presents any reasonable potential to cause take of marine mammals.

    Proposed mitigation, monitoring, and reporting measures are described in detail later in this document (please see Proposed Mitigation and Proposed Monitoring and Reporting).

    Description of Marine Mammals in the Area of Specified Activities

    Sections 3 and 4 of the IHA application summarize available information regarding status and trends, distribution and habitat preferences, and behavior and life history, of the potentially affected species. We refer the reader to these descriptions, incorporated here by reference, instead of reprinting the information. Additional information regarding population trends and threats may be found in NMFS's Stock Assessment Reports (SARs; https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-stock-assessments ) and more general information about these species ( e.g., physical and behavioral descriptions) may be found on NMFS's website ( https://www.fisheries.noaa.gov/​find-species ).

    Table 1 lists all species or stocks for which take is expected and proposed to be authorized for this action, and summarizes information related to the population or stock, including regulatory status under the MMPA and Endangered Species Act (ESA) and potential biological removal (PBR), where known. For taxonomy, we follow Committee on Taxonomy (2021). PBR is defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population (as described in NMFS's SARs). While no mortality is anticipated or authorized here, PBR and annual serious injury and mortality from anthropogenic sources are included here as gross indicators of the status of the species and other threats.

    Marine mammal abundance estimates presented in this document represent the total number of individuals that make up a given stock or the total number estimated within a particular study or survey area. NMFS's stock abundance estimates for most species represent the total estimate of individuals within the geographic area, if known, that comprises that stock. For most species, stock abundance estimates are based on sightings within the U.S. EEZ, however for some species, this geographic area may extend beyond U.S. waters. Other species may use survey abundance estimates. Survey abundance (as compared to stock or species abundance) is the total number of individuals estimated within the survey area, which may or may not align completely with a stock's geographic range as defined in the SARs. These surveys may also extend beyond U.S. waters. In this case, the proposed survey area outside of the U.S. EEZ does not necessarily overlap with the ranges for stocks managed by NMFS. However, we assume that individuals of these species that may be encountered during the survey may be part of those stocks.

    All managed stocks in this region are assessed in NMFS's U.S. Atlantic and Gulf of Mexico SARs ( e.g., Hayes et al., 2021). All values presented in Table 1 are the most recent available at the time of publication and are available in the 2020 SARs (Hayes et al., 2021) and draft 2021 SARs (available online at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​draft-marine-mammal-stock-assessment-reports ).

    For the majority of species potentially present in the specified geographical region, NMFS has designated only a single generic stock ( i.e., “Gulf of Mexico”) for management purposes, although there is currently no information to differentiate the stock from the Atlantic Ocean stock of the same species, nor information on whether more than one stock may exist in the GOM (Hayes et al., 2017).

    Table 1—Marine Mammals That Could Occur in the Survey Area

    Common nameScientific nameStockESA/ MMPA status; strategic (Y/N) 1Stock abundance (CV, N min , most recent abundance survey) 2PBRAnnual M/SI 3Gulf of Mexico population abundance (Roberts et al., 2016) 4
    Order Cetartiodactyla—Cetacea—Superfamily Odontoceti (toothed whales, dolphins, and porpoises)
    Family Physeteridae:
    Sperm whalePhyseter macrocephalusGulf of MexicoE/D; Y1,180 (0.22, 983, 2018)29.62,207
    Family Kogiidae:
    Pygmy sperm whale 6Kogia brevicepsGulf of Mexico-/-; N336 (0.35, 253, 2018)2.5314,373
    Dwarf sperm whale 6Kogia sima
    Family Ziphiidae (beaked whales):
    Cuvier's beaked whale 6Ziphius cavirstrisGulf of Mexico-/-; N18 (0.75, 10, 2018)0.15.23,768
    Blainville's beaked whale 6Mesoplodon densirostrisGulf of Mexico-/-; N98 (0.46, 68, 2018)0.75.2
    Gervais' beaked whale 6Mesoplodon europaeusGulf of Mexico-/-; N20 (0.98, 10, 2018)0.15.2
    Family Delphinidae:
    Rough-toothed dolphinSteno bredanensisGulf of Mexico-/-; Nunknown (n/a, unknown, 2018)undetermined394,853
    Bottlenose dolphinTursiops truncatusGulf of Mexico Oceanic-/-; N7,462 (0.31, 5,769, 2018)58326  176,108
    Pantropical spotted dolphinStenella attenuataGulf of Mexico-/-; N37,195 (0.24, 30,377, 2018)304241102,361
    Atlantic spotted dolphinStenella frontalisGulf of Mexico-/-; N21,506 (0.26, 17,339, 2018)1663674,785
    Start Printed Page 71431
    Spinner dolphinStenella longirostrisGulf of Mexico-/-; Y2,991 (0.54, 1,954, 2018)2011325,114
    Clymene dolphinStenella clymeneGulf of Mexico-/-; Y513 (1.03, 250, 2018)2.58.411,895
    Striped dolphinStenella coeruleoalbaGulf of Mexico-/-; Y1,817 (0.56, 1,172, 2018)12135,229
    Fraser's dolphinLagenodelphis hoseiGulf of Mexico-/-; N213 (1.03, 104, 2018)1Unknown1,665
    Risso's dolphinGrampus griseusGulf of Mexico-/-; N1,974 (0.46, 1,368, 2018)145.33,764
    Melon-headed whalePeponocephala electraGulf of Mexico-/-; N1,749 (0.68, 1,039, 2018)109.57,003
    Pygmy killer whaleFeresa attenuataGulf of Mexico-/-; N613 (1.15, 283, 2018)2.81.62,126
    False killer whalePseudorca crassidensGulf of Mexico-/-; N494 (0.79, 276, 2018)2.8Unknown3,204
    Killer whaleOrcinus orcaGulf of Mexico-/-; N267 (0.75, 152, 2018)1.5Unknown185
    Short-finned pilot whaleGlobicephalus macrorhynchusGulf of Mexico-/-; N1,321 (0.43, 934, 2018)7.53.91,981
    1  Endangered Species Act (ESA) status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed under the ESA or designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality exceeds PBR or which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed under the ESA is automatically designated under the MMPA as depleted and as a strategic stock.
    2  NMFS marine mammal stock assessment reports online at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​draft-marine-mammal-stock-assessment-reports. CV is coefficient of variation; Nmin is the minimum estimate of stock abundance. In some cases, CV is not applicable.
    3  These values, found in NMFS's SARs, represent annual levels of human-caused mortality plus serious injury from all sources combined ( e.g., commercial fisheries, ship strike). Annual mortality/serious injury (M/SI) often cannot be determined precisely and is in some cases presented as a minimum value or range. A CV associated with estimated mortality due to commercial fisheries is presented in some cases.
    4  This information represents species- or guild-specific best abundance estimate predicted by habitat-based cetacean density models (Roberts et al., 2016). These models provide the best available scientific information regarding predicted density patterns of cetaceans in the U.S. Gulf of Mexico, and we provide the corresponding abundance predictions as a point of reference. Total abundance estimates were produced by computing the mean density of all pixels in the modeled area and multiplying by its area. For those taxa where a density surface model predicting abundance by month was produced, the maximum mean seasonal abundance was used. For those taxa where abundance is not predicted by month, only mean annual abundance is available. For more information, see https://seamap.env.duke.edu/​models/​Duke/​GOM/​.
    5  Abundance estimates are in some cases reported for a guild or group of species when those species are difficult to differentiate at sea. Similarly, the habitat-based cetacean density models produced by Roberts et al. (2016) are based in part on available observational data which, in some cases, is limited to genus or guild in terms of taxonomic definition. NMFS's SARs present pooled abundance estimates for Kogia spp. and Mesoplodon spp., while Roberts et al. (2016) produced density models to genus level for Kogia spp. and as a guild for beaked whales ( Ziphius cavirostris and Mesoplodon spp.). Finally, Roberts et al. (2016) produced a density model for bottlenose dolphins that does not differentiate between oceanic, shelf, and coastal stocks.

    In Table 1 above, we report two sets of abundance estimates: Those from NMFS SARs and those predicted by Roberts et al. (2016). Please see the table footnotes for more detail. NMFS's SAR estimates are typically generated from the most recent shipboard and/or aerial surveys conducted. The Roberts et al. (2016) abundance estimates represent the output of predictive models derived from multi-year observations and associated environmental parameters and which incorporate corrections for detection bias. Incorporating more data over multiple years of observation can yield different results in either direction, as the result is not as readily influenced by fine-scale shifts in species habitat preferences or by the absence of a species in the study area during a given year. NMFS's abundance estimates show substantial year-to-year variability in some cases. For example, NMFS-reported estimates for the Clymene dolphin vary by a maximum factor of more than 100 (2009 estimate of 129 versus 1996-2001 estimate of 17,355), indicating that it may be more appropriate to use the model prediction versus a point estimate, as the model incorporates data from 1992-2009. The latter factor—incorporation of correction for detection bias—should systematically result in greater abundance predictions. For these reasons, we expect that the Roberts et al. (2016) estimates are generally more realistic and, for these purposes, represent the best available information. For purposes of assessing estimated exposures relative to abundance—used in this case to understand the scale of the predicted takes compared to the population—we generally believe that the Roberts et al. (2016) abundance predictions are most appropriate because they were used to generate the exposure estimates and therefore provide the most relevant comparison (see Estimated Take). Roberts et al. (2016) represents the best available scientific information regarding marine mammal occurrence and distribution in the Gulf of Mexico.

    As the planned survey lines are outside of the U.S. EEZ, they do not directly overlap with the defined stock ranges within the Gulf of Mexico (Hayes et al., 2021). However, some of the survey lines occur near the U.S. EEZ, and the distribution and abundance of species in U.S. EEZ waters are assumed representative of those in the survey area. As indicated above, all 20 species (with 20 representative stocks in the northern Gulf of Mexico) in Table 1 temporally and spatially co-occur with the activity to the degree that take is reasonably likely to occur, and we have proposed authorizing it. All species that could potentially occur in the proposed survey areas are included in Table 2 of the IHA application. While fin whales ( Balaenoptera physalus ), Rice's whales ( Balaenoptera ricei, formerly known as Gulf of Mexico Bryde's whales), minke whales ( Balaenoptera acutorostrata ), and humpback whales ( Megaptera novaeangliae ) have the potential to occur in the southeast Gulf of Mexico, the temporal and/or spatial occurrence of these species is such that take is not expected to occur, and they are not discussed further beyond the explanation provided here. These species, and other mysticete species for which there exist rare sighting or stranding records, are considered only of accidental occurrence in the Gulf of Mexico and are generally historically known only from a very small number of strandings and/or sightings (Würsig et al., 2000; Würsig, 2017).

    The fin whale is widely distributed in all the world's oceans (Gambell 1985), although it is most abundant in Start Printed Page 71432 temperate and cold waters (Aguilar and García-Vernet 2018). The fin whale is the second-most frequently reported mysticete in the Gulf of Mexico (after the Rice's whale), though with only a handful of stranding and sighting records, and is considered here as a rare and likely accidental migrant. Roberts et al. (2016) developed a stratified density model for the fin whale in the Gulf of Mexico, on the basis of one observation during an aerial survey in the early 1990s. As noted by the model authors, while the probability of a chance encounter is not zero, the single sighting during NMFS survey effort should be considered extralimital (Roberts et al., 2015a). Duke University's Ocean Biodiversity Information System Spatial Ecological Analysis of Megavertebrate Populations (OBIS-SEAMAP) database includes 12 records of fin whales in the Gulf of Mexico, including six in the southern Gulf (OBIS 2020). Ortega-Ortiz (2002) reported a fin whale at the Campeche Escarpment but no sightings of fin whales have been reported in the Gulf of Mexico since 1998 (Roberts et al., 2016).

    Rice's whales are the only baleen whale to occur in the Gulf of Mexico on a regular basis throughout the year (Wursig et al., 2000) but according to Ortega-Ortiz (2000), they do not appear to occur in the southern Gulf of Mexico in Mexican and Cuban waters. Rice's whale calls were not detected via passive acoustic recorders at the Dry Tortugas or in the north-central GoM (south of Alabama) at Main Pass (S irović et al., 2014). The OBIS database includes 30 observation records for the northern Gulf of Mexico, but no records for the southern Gulf (OBIS 2020).

    The minke whale has a cosmopolitan distribution ranging from the tropics and subtropics to the ice edge in both hemispheres (Jefferson et al., 2015). Although widespread and common overall, they are rare in the Gulf of Mexico (Würsig et al., 2000). Würsig et al. (2000) reported ten strandings for the Gulf including the Florida Keys; the strandings occurred in the winter and spring and may have been northbound whales from the open ocean or Caribbean Sea. Based on Ortega-Ortiz (2002), the only record of a minke whale in the southern Gulf of Mexico is a single whale recorded as stranded at Celestún, on the northwestern coast of the Yucatán Peninsula.

    Although humpback whales only occur rarely in the Gulf of Mexico, several sightings have been made off the west coast of Florida, near Alabama, and off Texas (Würsig et al., 2000); these may have been individuals from the West Indian winter grounds that strayed into the GoM during migration (Weller et al., 1996; Jefferson and Schiro 1997). In addition, Würsig et al. (2000) reported that humpback songs have also been recorded with hydrophones in the northwestern Gulf of Mexico, and there are two stranding records. Humpbacks have also been sighted off the northwest coast of Cuba (Whitt et al., 2011). There are 35 records in the OBIS database for the Gulf, including records for the Campeche Bank survey area, Straits of Florida, and northwestern Cuba.

    Marine Mammal Hearing

    Hearing is the most important sensory modality for marine mammals underwater, and exposure to anthropogenic sound can have deleterious effects. To appropriately assess the potential effects of exposure to sound, it is necessary to understand the frequency ranges marine mammals are able to hear. Current data indicate that not all marine mammal species have equal hearing capabilities ( e.g., Richardson et al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect this, Southall et al. (2007) recommended that marine mammals be divided into functional hearing groups based on directly measured or estimated hearing ranges on the basis of available behavioral response data, audiograms derived using auditory evoked potential techniques, anatomical modeling, and other data. Note that no direct measurements of hearing ability have been successfully completed for mysticetes ( i.e., low-frequency cetaceans). Subsequently, NMFS (2018) described generalized hearing ranges for these marine mammal hearing groups. Generalized hearing ranges were chosen based on the approximately 65 decibel (dB) threshold from the normalized composite audiograms, with the exception for lower limits for low-frequency cetaceans where the lower bound was deemed to be biologically implausible and the lower bound from Southall et al. (2007) retained. Marine mammal hearing groups and their associated hearing ranges are provided in Table 2.

    Table 2—Marine Mammal Hearing Groups

    [NMFS, 2018]

    Hearing groupGeneralized hearing range *
    Low-frequency (LF) cetaceans (baleen whales)7 Hz to 35 kHz.
    Mid-frequency (MF) cetaceans (dolphins, toothed whales, beaked whales, bottlenose whales)150 Hz to 160 kHz.
    High-frequency (HF) cetaceans (true porpoises, Kogia, river dolphins, cephalorhynchid, Lagenorhynchus cruciger & L. australis )275 Hz to 160 kHz.
    Phocid pinnipeds (PW) (underwater) (true seals)50 Hz to 86 kHz.
    Otariid pinnipeds (OW) (underwater) (sea lions and fur seals)60 Hz to 39 kHz.
    * Represents the generalized hearing range for the entire group as a composite ( i.e., all species within the group), where individual species' hearing ranges are typically not as broad. Generalized hearing range chosen based on ~65 dB threshold from normalized composite audiogram, with the exception for lower limits for LF cetaceans (Southall et al. 2007) and PW pinniped (approximation).

    For more detail concerning these groups and associated frequency ranges, please see NMFS (2018) for a review of available information. Twenty species of cetacean have the reasonable potential to co-occur with the proposed survey activities. No pinnipeds are expected to be present or taken. Of the cetacean species that may be present, 18 are classified as mid-frequency cetaceans ( i.e., all delphinid and ziphiid species and the sperm whale) and two are classified as high-frequency cetaceans ( i.e., harbor porpoise and Kogia spp.). No low-frequency cetaceans ( i.e., baleen whales) are expected to be present or taken.

    Potential Effects of Specified Activities on Marine Mammals and Their Habitat

    This section includes a summary and discussion of the ways that components of the specified activity may impact marine mammals and their habitat. The Estimated Take section later in this document includes a quantitative analysis of the number of individuals Start Printed Page 71433 that are expected to be taken by this activity. The Negligible Impact Analysis and Determination section considers the content of this section, the Estimated Take section, and the Proposed Mitigation section, to draw conclusions regarding the likely impacts of these activities on the reproductive success or survivorship of individuals and how those impacts on individuals are likely to impact marine mammal species or stocks.

    Description of Active Acoustic Sound Sources

    This section contains a brief technical background on sound, the characteristics of certain sound types, and on metrics used in this proposal inasmuch as the information is relevant to the specified activity and to a discussion of the potential effects of the specified activity on marine mammals found later in this document.

    Sound travels in waves, the basic components of which are frequency, wavelength, velocity, and amplitude. Frequency is the number of pressure waves that pass by a reference point per unit of time and is measured in hertz (Hz) or cycles per second. Wavelength is the distance between two peaks or corresponding points of a sound wave (length of one cycle). Higher frequency sounds have shorter wavelengths than lower frequency sounds, and typically attenuate (decrease) more rapidly, except in certain cases in shallower water. Amplitude is the height of the sound pressure wave or the “loudness” of a sound and is typically described using the relative unit of the dB. A sound pressure level (SPL) in dB is described as the ratio between a measured pressure and a reference pressure (for underwater sound, this is 1 microPascal (μPa)) and is a logarithmic unit that accounts for large variations in amplitude; therefore, a relatively small change in dB corresponds to large changes in sound pressure. The source level (SL) represents the SPL referenced at a distance of 1 m from the source (referenced to 1 μPa) while the received level is the SPL at the listener's position (referenced to 1 μPa).

    Root mean square (rms) is the quadratic mean sound pressure over the duration of an impulse. Root mean square is calculated by squaring all of the sound amplitudes, averaging the squares, and then taking the square root of the average (Urick, 1983). Root mean square accounts for both positive and negative values; squaring the pressures makes all values positive so that they may be accounted for in the summation of pressure levels (Hastings and Popper, 2005). This measurement is often used in the context of discussing behavioral effects, in part because behavioral effects, which often result from auditory cues, may be better expressed through averaged units than by peak pressures.

    Sound exposure level (SEL; represented as dB re 1 μPa2 -s) represents the total energy contained within a pulse and considers both intensity and duration of exposure. Peak sound pressure (also referred to as zero-to-peak sound pressure or 0-p) is the maximum instantaneous sound pressure measurable in the water at a specified distance from the source and is represented in the same units as the rms sound pressure. Another common metric is peak-to-peak sound pressure (pk-pk), which is the algebraic difference between the peak positive and peak negative sound pressures. Peak-to-peak pressure is typically approximately 6 dB higher than peak pressure (Southall et al., 2007).

    When underwater objects vibrate or activity occurs, sound-pressure waves are created. These waves alternately compress and decompress the water as the sound wave travels. Underwater sound waves radiate in a manner similar to ripples on the surface of a pond and may be either directed in a beam or beams or may radiate in all directions (omnidirectional sources), as is the case for pulses produced by the airguns considered here. The compressions and decompressions associated with sound waves are detected as changes in pressure by aquatic life and man-made sound receptors such as hydrophones.

    Even in the absence of sound from the specified activity, the underwater environment is typically loud due to ambient sound. Ambient sound is defined as environmental background sound levels lacking a single source or point (Richardson et al., 1995), and the sound level of a region is defined by the total acoustical energy being generated by known and unknown sources. These sources may include physical ( e.g., wind and waves, earthquakes, ice, atmospheric sound), biological ( e.g., sounds produced by marine mammals, fish, and invertebrates), and anthropogenic ( e.g., vessels, dredging, construction) sound. A number of sources contribute to ambient sound, including the following (Richardson et al., 1995):

    Wind and waves: The complex interactions between wind and water surface, including processes such as breaking waves and wave-induced bubble oscillations and cavitation, are a main source of naturally occurring ambient sound for frequencies between 200 Hz and 50 kHz (Mitson, 1995). In general, ambient sound levels tend to increase with increasing wind speed and wave height. Surf sound becomes important near shore, with measurements collected at a distance of 8.5 km from shore showing an increase of 10 dB in the 100 to 700 Hz band during heavy surf conditions;

    Precipitation: Sound from rain and hail impacting the water surface can become an important component of total sound at frequencies above 500 Hz, and possibly down to 100 Hz during quiet times;

    Biological: Marine mammals can contribute significantly to ambient sound levels, as can some fish and snapping shrimp. The frequency band for biological contributions is from approximately 12 Hz to over 100 kHz; and

    Anthropogenic: Sources of ambient sound related to human activity include transportation (surface vessels), dredging and construction, oil and gas drilling and production, seismic surveys, sonar, explosions, and ocean acoustic studies. Vessel noise typically dominates the total ambient sound for frequencies between 20 and 300 Hz. In general, the frequencies of anthropogenic sounds are below 1 kHz and, if higher frequency sound levels are created, they attenuate rapidly. Sound from identifiable anthropogenic sources other than the activity of interest ( e.g., a passing vessel) is sometimes termed background sound, as opposed to ambient sound.

    The sum of the various natural and anthropogenic sound sources at any given location and time—which comprise “ambient” or “background” sound—depends not only on the source levels (as determined by current weather conditions and levels of biological and human activity) but also on the ability of sound to propagate through the environment. In turn, sound propagation is dependent on the spatially and temporally varying properties of the water column and sea floor, and is frequency-dependent. As a result of the dependence on a large number of varying factors, ambient sound levels can be expected to vary widely over both coarse and fine spatial and temporal scales. Sound levels at a given frequency and location can vary by 10-20 dB from day to day (Richardson et al., 1995). The result is that, depending on the source type and its intensity, sound from a given activity may be a negligible addition to the local environment or could form a distinctive signal that may affect marine mammals. Details of source types are described in the following text. Start Printed Page 71434

    Sounds are often considered to fall into one of two general types: Pulsed and non-pulsed (defined in the following). The distinction between these two sound types is important because they have differing potential to cause physical effects, particularly with regard to hearing ( e.g., Ward, 1997 in Southall et al., 2007). Please see Southall et al. (2007) for an in-depth discussion of these concepts.

    Pulsed sound sources ( e.g., airguns, explosions, gunshots, sonic booms, impact pile driving) produce signals that are brief (typically considered to be less than one second), broadband, atonal transients (ANSI, 1986, 2005; Harris, 1998; NIOSH, 1998; ISO, 2003) and occur either as isolated events or repeated in some succession. Pulsed sounds are all characterized by a relatively rapid rise from ambient pressure to a maximal pressure value followed by a rapid decay period that may include a period of diminishing, oscillating maximal and minimal pressures, and generally have an increased capacity to induce physical injury as compared with sounds that lack these features.

    Non-pulsed sounds can be tonal, narrowband, or broadband, brief or prolonged, and may be either continuous or non-continuous (ANSI, 1995; NIOSH, 1998). Some of these non-pulsed sounds can be transient signals of short duration but without the essential properties of pulses ( e.g., rapid rise time). Examples of non-pulsed sounds include those produced by vessels, aircraft, machinery operations such as drilling or dredging, vibratory pile driving, and active sonar systems (such as those used by the U.S. Navy). The duration of such sounds, as received at a distance, can be greatly extended in a highly reverberant environment.

    Airguns produce pulsed signals with energy in a frequency range from about 10-2,000 Hz, with most energy radiated at frequencies below 200 Hz. The amplitude of the acoustic wave emitted from the source is equal in all directions ( i.e., omnidirectional), but airgun arrays do possess some directionality due to different phase delays between guns in different directions. Airgun arrays are typically tuned to maximize functionality for data acquisition purposes, meaning that sound transmitted in horizontal directions and at higher frequencies is minimized to the extent possible.

    As described above, a hull-mounted MBES and an ADCP would also be operated from the R/V Justo Sierra continuously throughout the seismic surveys, but not during transits or and from the survey area or when airguns are not operating. Each ping emitted by the MBES consists of eight (in water >1,000 m deep) or four (<1,000 m) successive fan-shaped transmissions, each ensonifying a sector that extends 1° fore-aft. Given the movement and speed of the vessel, the intermittent and narrow downward-directed nature of the sounds emitted by the MBES mean that no exposure of marine mammals is likely to occur. In the unlikely event that exposure did occur, it would result in no more than one or two brief ping exposures of any individual marine mammal. Due to the lower source level of the ADCP relative to the R/V Justo Sierra' s airguns, sounds from the SBP and ADCP are expected to be effectively subsumed by sounds from the airguns. Thus, any marine mammal potentially exposed to sounds from the ADCP would already have been exposed to sounds from the airguns, which are expected to propagate further in the water. As such, we conclude that the likelihood of marine mammal take resulting from exposure to sound from the MBES or ADCP is discountable and therefore we do not consider noise from the MBES or ADCP further in this analysis.

    Acoustic Effects

    Here, we discuss the effects of active acoustic sources on marine mammals.

    Potential Effects of Underwater Sound —Please refer to the information given previously (“Description of Active Acoustic Sources”) regarding sound, characteristics of sound types, and metrics used in this document. Anthropogenic sounds cover a broad range of frequencies and sound levels and can have a range of highly variable impacts on marine life, from none or minor to potentially severe responses, depending on received levels, duration of exposure, behavioral context, and various other factors. The potential effects of underwater sound from active acoustic sources can potentially result in one or more of the following: Temporary or permanent hearing impairment, non-auditory physical or physiological effects, behavioral disturbance, stress, and masking (Richardson et al., 1995; Gordon et al., 2004; Nowacek et al., 2007; Southall et al., 2007; Götz et al., 2009). The degree of effect is intrinsically related to the signal characteristics, received level, distance from the source, and duration of the sound exposure. In general, sudden, high level sounds can cause hearing loss, as can longer exposures to lower level sounds. Temporary or permanent loss of hearing will occur almost exclusively for noise within an animal's hearing range. We first describe specific manifestations of acoustic effects before providing discussion specific to the use of airguns.

    Richardson et al. (1995) described zones of increasing intensity of effect that might be expected to occur, in relation to distance from a source and assuming that the signal is within an animal's hearing range. First is the area within which the acoustic signal would be audible (potentially perceived) to the animal, but not strong enough to elicit any overt behavioral or physiological response. The next zone corresponds with the area where the signal is audible to the animal and of sufficient intensity to elicit behavioral or physiological responsiveness. Third is a zone within which, for signals of high intensity, the received level is sufficient to potentially cause discomfort or tissue damage to auditory or other systems. Overlaying these zones to a certain extent is the area within which masking ( i.e., when a sound interferes with or masks the ability of an animal to detect a signal of interest that is above the absolute hearing threshold) may occur; the masking zone may be highly variable in size.

    We describe the more severe effects of certain non-auditory physical or physiological effects only briefly as we do not expect that use of airgun arrays are reasonably likely to result in such effects (see below for further discussion). Potential effects from impulsive sound sources can range in severity from effects such as behavioral disturbance or tactile perception to physical discomfort, slight injury of the internal organs and the auditory system, or mortality (Yelverton et al., 1973). Non-auditory physiological effects or injuries that theoretically might occur in marine mammals exposed to high level underwater sound or as a secondary effect of extreme behavioral reactions ( e.g., change in dive profile as a result of an avoidance reaction) caused by exposure to sound include neurological effects, bubble formation, resonance effects, and other types of organ or tissue damage (Cox et al., 2006; Southall et al., 2007; Zimmer and Tyack, 2007; Tal et al., 2015). The survey activities considered here do not involve the use of devices such as explosives or mid-frequency tactical sonar that are associated with these types of effects.

    Threshold Shift —Marine mammals exposed to high-intensity sound, or to lower-intensity sound for prolonged periods, can experience hearing threshold shift (TS), which is the loss of hearing sensitivity at certain frequency ranges (Finneran, 2015). TS can be permanent (PTS), in which case the loss Start Printed Page 71435 of hearing sensitivity is not fully recoverable, or temporary (TTS), in which case the animal's hearing threshold would recover over time (Southall et al., 2007). Repeated sound exposure that leads to TTS could cause PTS. In severe cases of PTS, there can be total or partial deafness, while in most cases the animal has an impaired ability to hear sounds in specific frequency ranges (Kryter, 1985).

    When PTS occurs, there is physical damage to the sound receptors in the ear ( i.e., tissue damage), whereas TTS represents primarily tissue fatigue and is reversible (Southall et al., 2007; Houser, 2021). In addition, other investigators have suggested that TTS is within the normal bounds of physiological variability and tolerance and does not represent physical injury ( e.g., Ward, 1997). Therefore, NMFS does not consider TTS to constitute auditory injury.

    Relationships between TTS and PTS thresholds have not been studied in marine mammals, and there is no PTS data for cetaceans but such relationships are assumed to be similar to those in humans and other terrestrial mammals. PTS typically occurs at exposure levels at least several dBs above (a 40-dB threshold shift approximates PTS onset; e.g., Kryter et al., 1966; Miller, 1974) that inducing mild TTS (a 6-dB threshold shift approximates TTS onset; e.g., Southall et al. 2007). Based on data from terrestrial mammals, a precautionary assumption is that the PTS thresholds for impulse sounds (such as airgun pulses as received close to the source) are at least 6 dB higher than the TTS threshold on a peak-pressure basis and PTS cumulative sound exposure level thresholds are 15 to 20 dB higher than TTS cumulative sound exposure level thresholds (Southall et al., 2007). Given the higher level of sound or longer exposure duration necessary to cause PTS as compared with TTS, it is considerably less likely that PTS could occur.

    For mid-frequency cetaceans in particular, potential protective mechanisms may help limit onset of TTS or prevent onset of PTS. Such mechanisms include dampening of hearing, auditory adaptation, or behavioral amelioration ( e.g., Nachtigall and Supin, 2013; Miller et al., 2012; Finneran et al., 2015; Popov et al., 2016).

    TTS is the mildest form of hearing impairment that can occur during exposure to sound (Kryter, 1985). While experiencing TTS, the hearing threshold rises, and a sound must be at a higher level in order to be heard. In terrestrial and marine mammals, TTS can last from minutes or hours to days (in cases of strong TTS). In many cases, hearing sensitivity recovers rapidly after exposure to the sound ends. Few data on sound levels and durations necessary to elicit mild TTS have been obtained for marine mammals.

    Marine mammal hearing plays a critical role in communication with conspecifics, and interpretation of environmental cues for purposes such as predator avoidance and prey capture. Depending on the degree (elevation of threshold in dB), duration ( i.e., recovery time), and frequency range of TTS, and the context in which it is experienced, TTS can have effects on marine mammals ranging from discountable to serious. For example, a marine mammal may be able to readily compensate for a brief, relatively small amount of TTS in a non-critical frequency range that occurs during a time where ambient noise is lower and there are not as many competing sounds present. Alternatively, a larger amount and longer duration of TTS sustained during time when communication is critical for successful mother/calf interactions could have more serious impacts.

    Finneran et al. (2015) measured hearing thresholds in three captive bottlenose dolphins before and after exposure to ten pulses produced by a seismic airgun in order to study TTS induced after exposure to multiple pulses. Exposures began at relatively low levels and gradually increased over a period of several months, with the highest exposures at peak SPLs from 196 to 210 dB and cumulative (unweighted) SELs from 193-195 dB. No substantial TTS was observed. In addition, behavioral reactions were observed that indicated that animals can learn behaviors that effectively mitigate noise exposures (although exposure patterns must be learned, which is less likely in wild animals than for the captive animals considered in this study). The authors note that the failure to induce more significant auditory effects likely due to the intermittent nature of exposure, the relatively low peak pressure produced by the acoustic source, and the low-frequency energy in airgun pulses as compared with the frequency range of best sensitivity for dolphins and other mid-frequency cetaceans.

    Currently, TTS data only exist for four species of cetaceans (bottlenose dolphin, beluga whale, harbor porpoise, and Yangtze finless porpoise) exposed to a limited number of sound sources ( i.e., mostly tones and octave-band noise) in laboratory settings (Finneran, 2015). In general, harbor porpoises have a lower TTS onset than other measured cetacean species (Finneran, 2015). Additionally, the existing marine mammal TTS data come from a limited number of individuals within these species. There are no data available on noise-induced hearing loss for mysticetes.

    Critical questions remain regarding the rate of TTS growth and recovery after exposure to intermittent noise and the effects of single and multiple pulses. Data at present are also insufficient to construct generalized models for recovery and determine the time necessary to treat subsequent exposures as independent events. More information is needed on the relationship between auditory evoked potential and behavioral measures of TTS for various stimuli. For summaries of data on TTS in marine mammals or for further discussion of TTS onset thresholds, please see Southall et al. (2007), Finneran and Jenkins (2012), Finneran (2015), and NMFS (2016a).

    Behavioral Effects —Behavioral disturbance may include a variety of effects, including subtle changes in behavior ( e.g., minor or brief avoidance of an area or changes in vocalizations), more conspicuous changes in similar behavioral activities, and more sustained and/or potentially severe reactions, such as displacement from or abandonment of high-quality habitat. Behavioral responses to sound are highly variable and context-specific and any reactions depend on numerous intrinsic and extrinsic factors ( e.g., species, state of maturity, experience, current activity, reproductive state, auditory sensitivity, time of day), as well as the interplay between factors ( e.g., Richardson et al., 1995; Wartzok et al., 2003; Southall et al., 2007; Weilgart, 2007; Archer et al., 2010). Behavioral reactions can vary not only among individuals but also within an individual, depending on previous experience with a sound source, context, and numerous other factors (Ellison et al., 2012), and can vary depending on characteristics associated with the sound source ( e.g., whether it is moving or stationary, number of sources, distance from the source). Please see Appendices B-C of Southall et al. (2007) for a review of studies involving marine mammal behavioral responses to sound.

    Habituation can occur when an animal's response to a stimulus wanes with repeated exposure, usually in the absence of unpleasant associated events (Wartzok et al., 2003). Animals are most likely to habituate to sounds that are predictable and unvarying. It is important to note that habituation is appropriately considered as a Start Printed Page 71436 “progressive reduction in response to stimuli that are perceived as neither aversive nor beneficial,” rather than as, more generally, moderation in response to human disturbance (Bejder et al., 2009). The opposite process is sensitization, when an unpleasant experience leads to subsequent responses, often in the form of avoidance, at a lower level of exposure. As noted, behavioral state may affect the type of response. For example, animals that are resting may show greater behavioral change in response to disturbing sound levels than animals that are highly motivated to remain in an area for feeding (Richardson et al., 1995; NRC, 2003; Wartzok et al., 2003). Controlled experiments with captive marine mammals have showed pronounced behavioral reactions, including avoidance of loud sound sources (Ridgway et al., 1997). Observed responses of wild marine mammals to loud pulsed sound sources (typically seismic airguns or acoustic harassment devices) have been varied but often consist of avoidance behavior or other behavioral changes suggesting discomfort (Morton and Symonds, 2002; see also Richardson et al., 1995; Nowacek et al., 2007). However, many delphinids approach acoustic source vessels with no apparent discomfort or obvious behavioral change ( e.g., Barkaszi et al., 2012).

    Available studies show wide variation in response to underwater sound; therefore, it is difficult to predict specifically how any given sound in a particular instance might affect marine mammals perceiving the signal. If a marine mammal does react briefly to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant ( e.g., Lusseau and Bejder, 2007; Weilgart, 2007; NRC, 2005). However, there are broad categories of potential response, which we describe in greater detail here, that include alteration of dive behavior, alteration of foraging behavior, effects to breathing, interference with or alteration of vocalization, avoidance, and flight.

    Changes in dive behavior can vary widely, and may consist of increased or decreased dive times and surface intervals as well as changes in the rates of ascent and descent during a dive ( e.g., Frankel and Clark, 2000; Ng and Leung, 2003; Nowacek et al., 2004; Goldbogen et al., 2013a, b). Variations in dive behavior may reflect interruptions in biologically significant activities ( e.g., foraging) or they may be of little biological significance. The impact of an alteration to dive behavior resulting from an acoustic exposure depends on what the animal is doing at the time of the exposure and the type and magnitude of the response.

    Disruption of feeding behavior can be difficult to correlate with anthropogenic sound exposure, so it is usually inferred by observed displacement from known foraging areas, the appearance of secondary indicators ( e.g., bubble nets or sediment plumes), or changes in dive behavior. As for other types of behavioral response, the frequency, duration, and temporal pattern of signal presentation, as well as differences in species sensitivity, are likely contributing factors to differences in response in any given circumstance ( e.g., Croll et al., 2001; Nowacek et al.; 2004; Madsen et al., 2006; Yazvenko et al., 2007). A determination of whether foraging disruptions incur fitness consequences would require information on or estimates of the energetic requirements of the affected individuals and the relationship between prey availability, foraging effort and success, and the life history stage of the animal.

    Visual tracking, passive acoustic monitoring, and movement recording tags were used to quantify sperm whale behavior prior to, during, and following exposure to airgun arrays at received levels in the range 140-160 dB at distances of 7-13 km, following a phase-in of sound intensity and full array exposures at 1-13 km (Madsen et al., 2006; Miller et al., 2009). Sperm whales did not exhibit horizontal avoidance behavior at the surface. However, foraging behavior may have been affected. The sperm whales exhibited 19 percent less vocal (buzz) rate during full exposure relative to post exposure, and the whale that was approached most closely had an extended resting period and did not resume foraging until the airguns had ceased firing. The remaining whales continued to execute foraging dives throughout exposure; however, swimming movements during foraging dives were 6 percent lower during exposure than control periods (Miller et al., 2009). These data raise concerns that seismic surveys may impact foraging behavior in sperm whales, although more data are required to understand whether the differences were due to exposure or natural variation in sperm whale behavior (Miller et al., 2009).

    Variations in respiration naturally vary with different behaviors and alterations to breathing rate as a function of acoustic exposure can be expected to co-occur with other behavioral reactions, such as a flight response or an alteration in diving. However, respiration rates in and of themselves may be representative of annoyance or an acute stress response. Various studies have shown that respiration rates may either be unaffected or could increase, depending on the species and signal characteristics, again highlighting the importance in understanding species differences in the tolerance of underwater noise when determining the potential for impacts resulting from anthropogenic sound exposure ( e.g., Kastelein et al., 2001, 2005, 2006; Gailey et al., 2007, 2016).

    Marine mammals vocalize for different purposes and across multiple modes, such as whistling, echolocation click production, calling, and singing. Changes in vocalization behavior in response to anthropogenic noise can occur for any of these modes and may result from a need to compete with an increase in background noise or may reflect increased vigilance or a startle response. For example, in the presence of potentially masking signals, humpback whales and killer whales have been observed to increase the length of their songs (Miller et al., 2000; Fristrup et al., 2003; Foote et al., 2004), while right whales have been observed to shift the frequency content of their calls upward while reducing the rate of calling in areas of increased anthropogenic noise (Parks et al., 2007). In some cases, animals may cease sound production during production of aversive signals (Bowles et al., 1994).

    Cerchio et al. (2014) used passive acoustic monitoring to document the presence of singing humpback whales off the coast of northern Angola and to opportunistically test for the effect of seismic survey activity on the number of singing whales. Two recording units were deployed between March and December 2008 in the offshore environment; numbers of singers were counted every hour. Generalized Additive Mixed Models were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase, and received levels of noise (measured from a single pulse during each ten minute sampled period) on singer number. The number of singers significantly decreased with increasing received level of noise, suggesting that humpback whale breeding activity was disrupted to some extent by the survey activity.

    Castellote et al. (2012) reported acoustic and behavioral changes by fin whales in response to shipping and Start Printed Page 71437 airgun noise. Acoustic features of fin whale song notes recorded in the Mediterranean Sea and northeast Atlantic Ocean were compared for areas with different shipping noise levels and traffic intensities and during a seismic airgun survey. During the first 72 hours (h) of the survey, a steady decrease in song received levels and bearings to singers indicated that whales moved away from the acoustic source and out of the study area. This displacement persisted for a time period well beyond the 10-day duration of seismic airgun activity, providing evidence that fin whales may avoid an area for an extended period in the presence of increased noise. The authors hypothesize that fin whale acoustic communication is modified to compensate for increased background noise and that a sensitization process may play a role in the observed temporary displacement.

    Seismic pulses at average received levels of 131 dB re 1 μPa2 -s caused blue whales to increase call production (Di Iorio and Clark, 2010). In contrast, McDonald et al. (1995) tracked a blue whale with seafloor seismometers and reported that it stopped vocalizing and changed its travel direction at a range of 10 km from the acoustic source vessel (estimated received level 143 dB pk-pk). Blackwell et al. (2013) found that bowhead whale call rates dropped significantly at onset of airgun use at sites with a median distance of 41-45 km from the survey. Blackwell et al. (2015) expanded this analysis to show that whales actually increased calling rates as soon as airgun signals were detectable before ultimately decreasing calling rates at higher received levels ( i.e., 10-minute cumulative SEL (SELcum) of ~127 dB). Overall, these results suggest that bowhead whales may adjust their vocal output in an effort to compensate for noise before ceasing vocalization effort and ultimately deflecting from the acoustic source (Blackwell et al., 2013, 2015). These studies demonstrate that even low levels of noise received far from the source can induce changes in vocalization and/or behavior for mysticetes.

    Avoidance is the displacement of an individual from an area or migration path as a result of the presence of a sound or other stressors, and is one of the most obvious manifestations of disturbance in marine mammals (Richardson et al., 1995). For example, gray whales are known to change direction—deflecting from customary migratory paths—in order to avoid noise from seismic surveys (Malme et al., 1984). Humpback whales showed avoidance behavior in the presence of an active seismic array during observational studies and controlled exposure experiments in western Australia (McCauley et al., 2000). Avoidance may be short-term, with animals returning to the area once the noise has ceased ( e.g., Bowles et al., 1994; Goold, 1996; Stone et al., 2000; Morton and Symonds, 2002; Gailey et al., 2007). Longer-term displacement is possible, however, which may lead to changes in abundance or distribution patterns of the affected species in the affected region if habituation to the presence of the sound does not occur ( e.g., Bejder et al., 2006; Teilmann et al., 2006).

    A flight response is a dramatic change in normal movement to a directed and rapid movement away from the perceived location of a sound source. The flight response differs from other avoidance responses in the intensity of the response ( e.g., directed movement, rate of travel). Relatively little information on flight responses of marine mammals to anthropogenic signals exist, although observations of flight responses to the presence of predators have occurred (Connor and Heithaus, 1996). The result of a flight response could range from brief, temporary exertion and displacement from the area where the signal provokes flight to, in extreme cases, marine mammal strandings (Evans and England, 2001). However, it should be noted that response to a perceived predator does not necessarily invoke flight (Ford and Reeves, 2008), and whether individuals are solitary or in groups may influence the response.

    Behavioral disturbance can also impact marine mammals in more subtle ways. Increased vigilance may result in costs related to diversion of focus and attention ( i.e., when a response consists of increased vigilance, it may come at the cost of decreased attention to other critical behaviors such as foraging or resting). These effects have generally not been demonstrated for marine mammals, but studies involving fish and terrestrial animals have shown that increased vigilance may substantially reduce feeding rates ( e.g., Beauchamp and Livoreil, 1997; Fritz et al., 2002; Purser and Radford, 2011). In addition, chronic disturbance can cause population declines through reduction of fitness ( e.g., decline in body condition) and subsequent reduction in reproductive success, survival, or both ( e.g., Harrington and Veitch, 1992; Daan et al., 1996; Bradshaw et al., 1998). However, Ridgway et al. (2006) reported that increased vigilance in bottlenose dolphins exposed to sound over a 5 day period did not cause any sleep deprivation or stress effects.

    Many animals perform vital functions, such as feeding, resting, traveling, and socializing, on a diel cycle (24-hour cycle). Disruption of such functions resulting from reactions to stressors such as sound exposure are more likely to be significant if they last more than one diel cycle or recur on subsequent days (Southall et al., 2007). Consequently, a behavioral response lasting less than one day and not recurring on subsequent days is not considered particularly severe unless it could directly affect reproduction or survival (Southall et al., 2007). Note that there is a difference between multi-day substantive behavioral reactions and multi-day anthropogenic activities. For example, just because an activity lasts for multiple days does not necessarily mean that individual animals are either exposed to activity-related stressors for multiple days or, further, exposed in a manner resulting in sustained multi-day substantive behavioral responses.

    Stone (2015) reported data from at-sea observations during 1,196 seismic surveys from 1994 to 2010. When large arrays of airguns (considered to be 500 in3 or more) were firing, lateral displacement, more localized avoidance, or other changes in behavior were evident for most odontocetes. However, significant responses to large arrays were found only for the minke whale and fin whale. Behavioral responses observed included changes in swimming or surfacing behavior, with indications that cetaceans remained near the water surface at these times. Cetaceans were recorded as feeding less often when large arrays were active. Behavioral observations of gray whales during a seismic survey monitored whale movements and respirations pre-, during and post-seismic survey (Gailey et al., 2016). Behavioral state and water depth were the best `natural' predictors of whale movements and respiration and, after considering natural variation, none of the response variables were significantly associated with seismic survey or vessel sounds.

    Stress Responses —An animal's perception of a threat may be sufficient to trigger stress responses consisting of some combination of behavioral responses, autonomic nervous system responses, neuroendocrine responses, or immune responses ( e.g., Seyle, 1950; Moberg, 2000). In many cases, an animal's first and sometimes most economical (in terms of energetic costs) response is behavioral avoidance of the potential stressor. Autonomic nervous system responses to stress typically involve changes in heart rate, blood Start Printed Page 71438 pressure, and gastrointestinal activity. These responses have a relatively short duration and may or may not have a significant long-term effect on an animal's fitness.

    Neuroendocrine stress responses often involve the hypothalamus-pituitary-adrenal system. Virtually all neuroendocrine functions that are affected by stress—including immune competence, reproduction, metabolism, and behavior—are regulated by pituitary hormones. Stress-induced changes in the secretion of pituitary hormones have been implicated in failed reproduction, altered metabolism, reduced immune competence, and behavioral disturbance ( e.g., Moberg, 1987; Blecha, 2000). Increases in the circulation of glucocorticoids are also equated with stress (Romano et al., 2004).

    The primary distinction between stress (which is adaptive and does not normally place an animal at risk) and “distress” is the cost of the response. During a stress response, an animal uses glycogen stores that can be quickly replenished once the stress is alleviated. In such circumstances, the cost of the stress response would not pose serious fitness consequences. However, when an animal does not have sufficient energy reserves to satisfy the energetic costs of a stress response, energy resources must be diverted from other functions. This state of distress will last until the animal replenishes its energetic reserves sufficiently to restore normal function.

    Relationships between these physiological mechanisms, animal behavior, and the costs of stress responses are well-studied through controlled experiments and for both laboratory and free-ranging animals ( e.g., Holberton et al., 1996; Hood et al., 1998; Jessop et al., 2003; Krausman et al., 2004; Lankford et al., 2005). Stress responses due to exposure to anthropogenic sounds or other stressors and their effects on marine mammals have also been reviewed (Fair and Becker, 2000; Romano et al., 2002b) and, more rarely, studied in wild populations ( e.g., Romano et al., 2002a). For example, Rolland et al. (2012) found that noise reduction from reduced ship traffic in the Bay of Fundy was associated with decreased stress in North Atlantic right whales. These and other studies lead to a reasonable expectation that some marine mammals will experience physiological stress responses upon exposure to acoustic stressors and that it is possible that some of these would be classified as “distress.” In addition, any animal experiencing TTS would likely also experience stress responses (NRC, 2003).

    Auditory Masking —Sound can disrupt behavior through masking, or interfering with, an animal's ability to detect, recognize, or discriminate between acoustic signals of interest ( e.g., those used for intraspecific communication and social interactions, prey detection, predator avoidance, navigation) (Richardson et al., 1995; Erbe et al., 2016). Masking occurs when the receipt of a sound is interfered with by another coincident sound at similar frequencies and at similar or higher intensity, and may occur whether the sound is natural ( e.g., snapping shrimp, wind, waves, precipitation) or anthropogenic ( e.g., shipping, sonar, seismic exploration) in origin. The ability of a noise source to mask biologically important sounds depends on the characteristics of both the noise source and the signal of interest ( e.g., signal-to-noise ratio, temporal variability, direction), in relation to each other and to an animal's hearing abilities ( e.g., sensitivity, frequency range, critical ratios, frequency discrimination, directional discrimination, age or TTS hearing loss), and existing ambient noise and propagation conditions.

    Under certain circumstances, marine mammals experiencing significant masking could also be impaired from maximizing their performance fitness in survival and reproduction. Therefore, when the coincident (masking) sound is man-made, it may be considered harassment when disrupting or altering critical behaviors. It is important to distinguish TTS and PTS, which persist after the sound exposure, from masking, which occurs during the sound exposure. Because masking (without resulting in TS) is not associated with abnormal physiological function, it is not considered a physiological effect, but rather a potential behavioral effect.

    The frequency range of the potentially masking sound is important in determining any potential behavioral impacts. For example, low-frequency signals may have less effect on high-frequency echolocation sounds produced by odontocetes but are more likely to affect detection of mysticete communication calls and other potentially important natural sounds such as those produced by surf and some prey species. The masking of communication signals by anthropogenic noise may be considered as a reduction in the communication space of animals ( e.g., Clark et al., 2009) and may result in energetic or other costs as animals change their vocalization behavior ( e.g., Miller et al., 2000; Foote et al., 2004; Parks et al., 2007; Di Iorio and Clark, 2009; Holt et al., 2009). Masking can be reduced in situations where the signal and noise come from different directions (Richardson et al., 1995), through amplitude modulation of the signal, or through other compensatory behaviors (Houser and Moore, 2014). Masking can be tested directly in captive species ( e.g., Erbe, 2008), but in wild populations it must be either modeled or inferred from evidence of masking compensation. There are few studies addressing real-world masking sounds likely to be experienced by marine mammals in the wild ( e.g., Branstetter et al., 2013).

    Masking affects both senders and receivers of acoustic signals and can potentially have long-term chronic effects on marine mammals at the population level as well as at the individual level. Low-frequency ambient sound levels have increased by as much as 20 dB (more than three times in terms of SPL) in the world's ocean from pre-industrial periods, with most of the increase from distant commercial shipping (Hildebrand, 2009). All anthropogenic sound sources, but especially chronic and lower-frequency signals ( e.g., from vessel traffic), contribute to elevated ambient sound levels, thus intensifying masking.

    Masking effects of pulsed sounds (even from large arrays of airguns) on marine mammal calls and other natural sounds are expected to be limited, although there are few specific data on this. Because of the intermittent nature and low duty cycle of seismic pulses, animals can emit and receive sounds in the relatively quiet intervals between pulses. However, in exceptional situations, reverberation occurs for much or all of the interval between pulses ( e.g., Simard et al. 2005; Clark and Gagnon 2006), which could mask calls. Situations with prolonged strong reverberation are infrequent. However, it is common for reverberation to cause some lesser degree of elevation of the background level between airgun pulses ( e.g., Gedamke 2011; Guerra et al. 2011, 2016; Klinck et al. 2012; Guan et al. 2015), and this weaker reverberation presumably reduces the detection range of calls and other natural sounds to some degree. Guerra et al. (2016) reported that ambient noise levels between seismic pulses were elevated as a result of reverberation at ranges of 50 km from the seismic source. Based on measurements in deep water of the Southern Ocean, Gedamke (2011) estimated that the slight elevation of background levels during intervals between pulses reduced blue and fin Start Printed Page 71439 whale communication space by as much as 36-51 percent when a seismic survey was operating 450-2,800 km away. Based on preliminary modeling, Wittekind et al. (2016) reported that airgun sounds could reduce the communication range of blue and fin whales 2000 km from the seismic source. Nieukirk et al. (2012) and Blackwell et al. (2013) noted the potential for masking effects from seismic surveys on large whales.

    Some baleen and toothed whales are known to continue calling in the presence of seismic pulses, and their calls usually can be heard between the pulses ( e.g., Nieukirk et al. 2012; Thode et al. 2012; Bröker et al. 2013; Sciacca et al. 2016). As noted above, Cerchio et al. (2014) suggested that the breeding display of humpback whales off Angola could be disrupted by seismic sounds, as singing activity declined with increasing received levels. In addition, some cetaceans are known to change their calling rates, shift their peak frequencies, or otherwise modify their vocal behavior in response to airgun sounds ( e.g., Di Iorio and Clark 2010; Castellote et al. 2012; Blackwell et al. 2013, 2015). The hearing systems of baleen whales are undoubtedly more sensitive to low-frequency sounds than are the ears of the small odontocetes that have been studied directly ( e.g., MacGillivray et al. 2014). The sounds important to small odontocetes are predominantly at much higher frequencies than are the dominant components of airgun sounds, thus limiting the potential for masking. In general, masking effects of seismic pulses are expected to be minor, given the normally intermittent nature of seismic pulses.

    Ship Noise

    Vessel noise from the R/V Justo Sierra could affect marine animals in the proposed survey areas. Houghton et al. (2015) proposed that vessel speed is the most important predictor of received noise levels, and Putland et al. (2017) also reported reduced sound levels with decreased vessel speed. Sounds produced by large vessels generally dominate ambient noise at frequencies from 20 to 300 Hz (Richardson et al. 1995). However, some energy is also produced at higher frequencies (Hermannsen et al. 2014); low levels of high-frequency sound from vessels has been shown to elicit responses in harbor porpoise (Dyndo et al. 2015). Increased levels of ship noise have been shown to affect foraging by porpoise (Teilmann et al. 2015; Wisniewska et al. 2018); Wisniewska et al. (2018) suggest that a decrease in foraging success could have long-term fitness consequences.

    Ship noise, through masking, can reduce the effective communication distance of a marine mammal if the frequency of the sound source is close to that used by the animal, and if the sound is present for a significant fraction of time ( e.g., Richardson et al. 1995; Clark et al. 2009; Jensen et al. 2009; Gervaise et al. 2012; Hatch et al. 2012; Rice et al. 2014; Dunlop 2015; Erbe et al. 2015; Jones et al. 2017; Putland et al. 2017). In addition to the frequency and duration of the masking sound, the strength, temporal pattern, and location of the introduced sound also play a role in the extent of the masking (Branstetter et al. 2013, 2016; Finneran and Branstetter 2013; Sills et al. 2017). Branstetter et al. (2013) reported that time-domain metrics are also important in describing and predicting masking. In order to compensate for increased ambient noise, some cetaceans are known to increase the source levels of their calls in the presence of elevated noise levels from shipping, shift their peak frequencies, or otherwise change their vocal behavior ( e.g., Parks et al. 2011, 2012, 2016a,b; Castellote et al. 2012; Melcón et al. 2012; Azzara et al. 2013; Tyack and Janik 2013; Luís et al. 2014; Sairanen 2014; Papale et al. 2015; Bittencourt et al. 2016; Dahlheim and Castellote 2016; Gospić and Picciulin 2016; Gridley et al. 2016; Heiler et al. 2016; Martins et al. 2016; O'Brien et al. 2016; Tenessen and Parks 2016). Harp seals did not increase their call frequencies in environments with increased low-frequency sounds (Terhune and Bosker 2016). Holt et al. (2015) reported that changes in vocal modifications can have increased energetic costs for individual marine mammals. A negative correlation between the presence of some cetacean species and the number of vessels in an area has been demonstrated by several studies ( e.g., Campana et al. 2015; Culloch et al. 2016).

    Baleen whales are thought to be more sensitive to sound at these low frequencies than are toothed whales ( e.g., MacGillivray et al. 2014), possibly causing localized avoidance of the proposed survey area during seismic operations. Reactions of gray and humpback whales to vessels have been studied, and there is limited information available about the reactions of right whales and rorquals (fin, blue, and minke whales). Reactions of humpback whales to boats are variable, ranging from approach to avoidance (Payne 1978; Salden 1993). Baker et al. (1982, 1983) and Baker and Herman (1989) found humpbacks often move away when vessels are within several kilometers. Humpbacks seem less likely to react overtly when actively feeding than when resting or engaged in other activities (Krieger and Wing 1984, 1986). Increased levels of ship noise have been shown to affect foraging by humpback whales (Blair et al. 2016). Fin whale sightings in the western Mediterranean were negatively correlated with the number of vessels in the area (Campana et al. 2015). Minke whales and gray seals have shown slight displacement in response to construction-related vessel traffic (Anderwald et al. 2013).

    Many odontocetes show considerable tolerance of vessel traffic, although they sometimes react at long distances if confined by ice or shallow water, if previously harassed by vessels, or have had little or no recent exposure to ships (Richardson et al. 1995). Dolphins of many species tolerate and sometimes approach vessels ( e.g., Anderwald et al. 2013). Some dolphin species approach moving vessels to ride the bow or stern waves (Williams et al. 1992). Pirotta et al. (2015) noted that the physical presence of vessels, not just ship noise, disturbed the foraging activity of bottlenose dolphins. Sightings of striped dolphin, Risso's dolphin, sperm whale, and Cuvier's beaked whale in the western Mediterranean were negatively correlated with the number of vessels in the area (Campana et al. 2015).

    There are few data on the behavioral reactions of beaked whales to vessel noise, though they seem to avoid approaching vessels ( e.g., Würsig et al. 1998) or dive for an extended period when approached by a vessel ( e.g., Kasuya 1986). Based on a single observation, Aguilar Soto et al. (2006) suggest foraging efficiency of Cuvier's beaked whales may be reduced by close approach of vessels.

    In summary, project vessel sounds would not be at levels expected to cause anything more than possible localized and temporary behavioral changes in marine mammals, and would not be expected to result in significant negative effects on individuals or at the population level. In addition, in all oceans of the world, large vessel traffic is currently so prevalent that it is commonly considered a usual source of ambient sound (NSF-USGS 2011).

    Ship Strike

    Vessel collisions with marine mammals, or ship strikes, can result in death or serious injury of the animal. Wounds resulting from ship strike may include massive trauma, hemorrhaging, broken bones, or propeller lacerations (Knowlton and Kraus, 2001). An animal Start Printed Page 71440 at the surface may be struck directly by a vessel, a surfacing animal may hit the bottom of a vessel, or an animal just below the surface may be cut by a vessel's propeller. Superficial strikes may not kill or result in the death of the animal. These interactions are typically associated with large whales ( e.g., fin whales), which are occasionally found draped across the bulbous bow of large commercial ships upon arrival in port. Although smaller cetaceans are more maneuverable in relation to large vessels than are large whales, they may also be susceptible to strike. The severity of injuries typically depends on the size and speed of the vessel, with the probability of death or serious injury increasing as vessel speed increases (Knowlton and Kraus, 2001; Laist et al., 2001; Vanderlaan and Taggart, 2007; Conn and Silber, 2013). Impact forces increase with speed, as does the probability of a strike at a given distance (Silber et al., 2010; Gende et al., 2011).

    Pace and Silber (2005) also found that the probability of death or serious injury increased rapidly with increasing vessel speed. Specifically, the predicted probability of serious injury or death increased from 45 to 75 percent as vessel speed increased from 10 to 14 knots, and exceeded 90 percent at 17 knots. Higher speeds during collisions result in greater force of impact, but higher speeds also appear to increase the chance of severe injuries or death through increased likelihood of collision by pulling whales toward the vessel (Clyne, 1999; Knowlton et al., 1995). In a separate study, Vanderlaan and Taggart (2007) analyzed the probability of lethal mortality of large whales at a given speed, showing that the greatest rate of change in the probability of a lethal injury to a large whale as a function of vessel speed occurs between 8.6 and 15 knots. The chances of a lethal injury decline from approximately 80 percent at 15 knots to approximately 20 percent at 8.6 knots. At speeds below 11.8 knots, the chances of lethal injury drop below 50 percent, while the probability asymptotically increases toward one hundred percent above 15 knots.

    The R/V Justo Sierra travels at a speed of 4-5 knots during seismic acquisition. When not towing seismic equipment, the R/V Justo Sierra cruises at 12 knots and has a maximum speed of 12.5 knots. At survey speed, both the possibility of striking a marine mammal and the possibility of a strike resulting in serious injury or mortality are discountable. At average transit speed, the probability of serious injury or mortality resulting from a strike is less than 50 percent. However, the likelihood of a strike actually happening is again discountable. Ship strikes, as analyzed in the studies cited above, generally involve commercial shipping, which is much more common in both space and time than is geophysical survey activity. Jensen and Silber (2004) summarized ship strikes of large whales worldwide from 1975-2003 and found that most collisions occurred in the open ocean and involved large vessels ( e.g., commercial shipping). No such incidents were reported for geophysical survey vessels during that time period.

    It is possible for ship strikes to occur while traveling at slow speeds. For example, a hydrographic survey vessel traveling at low speed (5.5 knots) while conducting mapping surveys off the central California coast struck and killed a blue whale in 2009. The State of California determined that the whale had suddenly and unexpectedly surfaced beneath the hull, with the result that the propeller severed the whale's vertebrae, and that this was an unavoidable event. This strike represents the only such incident in approximately 540,000 hours of similar coastal mapping activity ( p = 1.9 × 10−6; 95 percent CI = 0−5.5 × 10−6; NMFS, 2013b). In addition, a research vessel reported a fatal strike in 2011 of a dolphin in the Atlantic, demonstrating that it is possible for strikes involving smaller cetaceans to occur. In that case, the incident report indicated that an animal apparently was struck by the vessel's propeller as it was intentionally swimming near the vessel. While indicative of the type of unusual events that cannot be ruled out, neither of these instances represents a circumstance that would be considered reasonably foreseeable or that would be considered preventable.

    Although the likelihood of the vessel striking a marine mammal is low, we propose to require a robust ship strike avoidance protocol (see Proposed Mitigation), which we believe eliminates any foreseeable risk of ship strike. We anticipate that vessel collisions involving a seismic data acquisition vessel towing gear, while not impossible, represent unlikely, unpredictable events for which there are no preventive measures. Given the required mitigation measures, the relatively slow speed of the vessel towing gear, the presence of bridge crew watching for obstacles at all times (including marine mammals), and the presence of marine mammal observers, we believe that the possibility of ship strike is discountable and, further, that were a strike of a large whale to occur, it would be unlikely to result in serious injury or mortality. No incidental take resulting from ship strike is anticipated, and this potential effect of the specified activity will not be discussed further in the following analysis.

    Stranding— When a living or dead marine mammal swims or floats onto shore and becomes “beached” or incapable of returning to sea, the event is a “stranding” (Geraci et al., 1999; Perrin and Geraci, 2002; Geraci and Lounsbury, 2005; NMFS, 2007). The legal definition for a stranding under the MMPA is that (A) a marine mammal is dead and is (i) on a beach or shore of the United States; or (ii) in waters under the jurisdiction of the United States (including any navigable waters); or (B) a marine mammal is alive and is (i) on a beach or shore of the United States and is unable to return to the water; (ii) on a beach or shore of the United States and, although able to return to the water, is in need of apparent medical attention; or (iii) in the waters under the jurisdiction of the United States (including any navigable waters), but is unable to return to its natural habitat under its own power or without assistance.

    Marine mammals strand for a variety of reasons, such as infectious agents, biotoxicosis, starvation, fishery interaction, ship strike, unusual oceanographic or weather events, sound exposure, or combinations of these stressors sustained concurrently or in series. However, the cause or causes of most strandings are unknown (Geraci et al., 1976; Eaton, 1979; Odell et al., 1980; Best, 1982). Numerous studies suggest that the physiology, behavior, habitat relationships, age, or condition of cetaceans may cause them to strand or might pre-dispose them to strand when exposed to another phenomenon. These suggestions are consistent with the conclusions of numerous other studies that have demonstrated that combinations of dissimilar stressors commonly combine to kill an animal or dramatically reduce its fitness, even though one exposure without the other does not produce the same result (Chroussos, 2000; Creel, 2005; DeVries et al., 2003; Fair and Becker, 2000; Foley et al., 2001; Moberg, 2000; Relyea, 2005a; 2005b, Romero, 2004; Sih et al., 2004).

    Use of military tactical sonar has been implicated in a majority of investigated stranding events. Most known stranding events have involved beaked whales, though a small number have involved deep-diving delphinids or sperm whales ( e.g., Mazzariol et al., 2010; Southall et al., 2013). In general, long duration (~1 second) and high-intensity sounds (>235 dB SPL) have been implicated in stranding events (Hildebrand, 2004). Start Printed Page 71441 With regard to beaked whales, mid-frequency sound is typically implicated (when causation can be determined) (Hildebrand, 2004). Although seismic airguns create predominantly low-frequency energy, the signal does include a mid-frequency component. We have considered the potential for the proposed surveys to result in marine mammal stranding and have concluded that, based on the best available information, stranding is not expected to occur.

    Effects to Prey —Marine mammal prey varies by species, season, and location and, for some, is not well documented. Fish react to sounds which are especially strong and/or intermittent low-frequency sounds, and behavioral responses such as flight or avoidance are the most likely effects. However, the reaction of fish to airguns depends on the physiological state of the fish, past exposures, motivation ( e.g., feeding, spawning, migration), and other environmental factors. Several studies have demonstrated that airgun sounds might affect the distribution and behavior of some fishes, potentially impacting foraging opportunities or increasing energetic costs ( e.g., Fewtrell and McCauley, 2012; Pearson et al., 1992; Skalski et al., 1992; Santulli et al., 1999; Paxton et al., 2017), though the bulk of studies indicate no or slight reaction to noise ( e.g., Miller and Cripps, 2013; Dalen and Knutsen, 1987; Pena et al., 2013; Chapman and Hawkins, 1969; Wardle et al., 2001; Sara et al., 2007; Jorgenson and Gyselman, 2009; Blaxter et al., 1981; Cott et al., 2012; Boeger et al., 2006), and that, most commonly, while there are likely to be impacts to fish as a result of noise from nearby airguns, such effects will be temporary. For example, investigators reported significant, short-term declines in commercial fishing catch rate of gadid fishes during and for up to five days after seismic survey operations, but the catch rate subsequently returned to normal (Engas et al., 1996; Engas and Lokkeborg, 2002). Other studies have reported similar findings (Hassel et al., 2004). Skalski et al. (1992) also found a reduction in catch rates—for rockfish ( Sebastes spp.) in response to controlled airgun exposure—but suggested that the mechanism underlying the decline was not dispersal but rather decreased responsiveness to baited hooks associated with an alarm behavioral response. A companion study showed that alarm and startle responses were not sustained following the removal of the sound source (Pearson et al., 1992). Therefore, Skalski et al. (1992) suggested that the effects on fish abundance may be transitory, primarily occurring during the sound exposure itself. In some cases, effects on catch rates are variable within a study, which may be more broadly representative of temporary displacement of fish in response to airgun noise ( i.e., catch rates may increase in some locations and decrease in others) than any long-term damage to the fish themselves (Streever et al., 2016).

    SPLs of sufficient strength have been known to cause injury to fish and fish mortality and, in some studies, fish auditory systems have been damaged by airgun noise (McCauley et al., 2003; Popper et al., 2005; Song et al., 2008). However, in most fish species, hair cells in the ear continuously regenerate and loss of auditory function likely is restored when damaged cells are replaced with new cells. Halvorsen et al. (2012b. (2012) showed that a TTS of 4-6 dB was recoverable within 24 hours for one species. Impacts would be most severe when the individual fish is close to the source and when the duration of exposure is long—both of which are conditions unlikely to occur for this survey that is necessarily transient in any given location and likely result in brief, infrequent noise exposure to prey species in any given area. For this survey, the sound source is constantly moving, and most fish would likely avoid the sound source prior to receiving sound of sufficient intensity to cause physiological or anatomical damage. In addition, ramp-up may allow certain fish species the opportunity to move further away from the sound source.

    A recent comprehensive review (Carroll et al., 2017) found that results are mixed as to the effects of airgun noise on the prey of marine mammals. While some studies suggest a change in prey distribution and/or a reduction in prey abundance following the use of seismic airguns, others suggest no effects or even positive effects in prey abundance. As one specific example, Paxton et al. (2017), which describes findings related to the effects of a 2014 seismic survey on a reef off of North Carolina, showed a 78 percent decrease in observed nighttime abundance for certain species. It is important to note that the evening hours during which the decline in fish habitat use was recorded (via video recording) occurred on the same day that the seismic survey passed, and no subsequent data is presented to support an inference that the response was long-lasting. Additionally, given that the finding is based on video images, the lack of recorded fish presence does not support a conclusion that the fish actually moved away from the site or suffered any serious impairment. In summary, this particular study corroborates prior studies indicating that a startle response or short-term displacement should be expected.

    Available data suggest that cephalopods are capable of sensing the particle motion of sounds and detect low frequencies up to 1-1.5 kHz, depending on the species, and so are likely to detect airgun noise (Kaifu et al., 2008; Hu et al., 2009; Mooney et al., 2010; Samson et al., 2014). Auditory injuries (lesions occurring on the statocyst sensory hair cells) have been reported upon controlled exposure to low-frequency sounds, suggesting that cephalopods are particularly sensitive to low-frequency sound (Andre et al., 2011; Sole et al., 2013). Behavioral responses, such as inking and jetting, have also been reported upon exposure to low-frequency sound (McCauley et al., 2000b; Samson et al., 2014). Similar to fish, however, the transient nature of the survey leads to an expectation that effects will be largely limited to behavioral reactions and would occur as a result of brief, infrequent exposures.

    With regard to potential impacts on zooplankton, McCauley et al. (2017) found that exposure to airgun noise resulted in significant depletion for more than half the taxa present and that there were two to three times more dead zooplankton after airgun exposure compared with controls for all taxa, within 1 km of the airguns. However, the authors also stated that in order to have significant impacts on r-selected species ( i.e., those with high growth rates and that produce many offspring) such as plankton, the spatial or temporal scale of impact must be large in comparison with the ecosystem concerned, and it is possible that the findings reflect avoidance by zooplankton rather than mortality (McCauley et al., 2017). In addition, the results of this study are inconsistent with a large body of research that generally finds limited spatial and temporal impacts to zooplankton as a result of exposure to airgun noise ( e.g., Dalen and Knutsen, 1987; Payne, 2004; Stanley et al., 2011). Most prior research on this topic, which has focused on relatively small spatial scales, has showed minimal effects ( e.g., Kostyuchenko, 1973; Booman et al., 1996; Sætre and Ona, 1996; Pearson et al., 1994; Bolle et al., 2012).

    A modeling exercise was conducted as a follow-up to the McCauley et al. (2017) study (as recommended by McCauley et al. ), in order to assess the potential for impacts on ocean ecosystem dynamics and zooplankton Start Printed Page 71442 population dynamics (Richardson et al., 2017). Richardson et al. (2017) found that for copepods with a short life cycle in a high-energy environment, a full-scale airgun survey would impact copepod abundance up to three days following the end of the survey, suggesting that effects such as those found by McCauley et al. (2017) would not be expected to be detectable downstream of the survey areas, either spatially or temporally.

    Notably, a recently described study produced results inconsistent with those of McCauley et al. (2017). Researchers conducted a field and laboratory study to assess if exposure to airgun noise affects mortality, predator escape response, or gene expression of the copepod Calanus finmarchicus (Fields et al., 2019). Immediate mortality of copepods was significantly higher, relative to controls, at distances of 5 m or less from the airguns. Mortality one week after the airgun blast was significantly higher in the copepods placed 10 m from the airgun but was not significantly different from the controls at a distance of 20 m from the airgun. The increase in mortality, relative to controls, did not exceed 30 percent at any distance from the airgun. Moreover, the authors caution that even this higher mortality in the immediate vicinity of the airguns may be more pronounced than what would be observed in free-swimming animals due to increased flow speed of fluid inside bags containing the experimental animals. There were no sublethal effects on the escape performance or the sensory threshold needed to initiate an escape response at any of the distances from the airgun that were tested. Whereas McCauley et al. (2017) reported an SEL of 156 dB at a range of 509-658 m, with zooplankton mortality observed at that range, Fields et al. (2019) reported an SEL of 186 dB at a range of 25 m, with no reported mortality at that distance. Regardless, if we assume a worst-case likelihood of severe impacts to zooplankton within approximately 1 km of the acoustic source, the brief time to regeneration of the potentially affected zooplankton populations does not lead us to expect any meaningful follow-on effects to the prey base for marine mammals.

    A recent review article concluded that, while laboratory results provide scientific evidence for high-intensity and low-frequency sound-induced physical trauma and other negative effects on some fish and invertebrates, the sound exposure scenarios in some cases are not realistic to those encountered by marine organisms during routine seismic operations (Carroll et al., 2017). The review finds that there has been no evidence of reduced catch or abundance following seismic activities for invertebrates, and that there is conflicting evidence for fish with catch observed to increase, decrease, or remain the same. Further, where there is evidence for decreased catch rates in response to airgun noise, these findings provide no information about the underlying biological cause of catch rate reduction (Carroll et al., 2017).

    In summary, impacts of the specified activity on marine mammal prey species will likely be limited to behavioral responses, the majority of prey species will be capable of moving out of the area during the survey, a rapid return to normal recruitment, distribution, and behavior for prey species is anticipated, and, overall, impacts to prey species will be minor and temporary. Prey species exposed to sound might move away from the sound source, experience TTS, experience masking of biologically relevant sounds, or show no obvious direct effects. Mortality from decompression injuries is possible in close proximity to a sound, but only limited data on mortality in response to airgun noise exposure are available (Hawkins et al., 2014). The most likely impacts for most prey species in the survey area would be temporary avoidance of the area. The proposed survey would move through an area relatively quickly, limiting exposure to multiple impulsive sounds. In all cases, sound levels would return to ambient once the survey moves out of the area or ends and the noise source is shut down and, when exposure to sound ends, behavioral and/or physiological responses are expected to end relatively quickly (McCauley et al., 2000b). The duration of fish avoidance of a given area after survey effort stops is unknown, but a rapid return to normal recruitment, distribution, and behavior is anticipated. While the potential for disruption of spawning aggregations or schools of important prey species can be meaningful on a local scale, the mobile and temporary nature of this survey and the likelihood of temporary avoidance behavior suggest that impacts would be minor.

    Acoustic Habitat —Acoustic habitat is the soundscape—which encompasses all of the sound present in a particular location and time, as a whole—when considered from the perspective of the animals experiencing it. Animals produce sound for, or listen for sounds produced by, conspecifics (communication during feeding, mating, and other social activities), other animals (finding prey or avoiding predators), and the physical environment (finding suitable habitats, navigating). Together, sounds made by animals and the geophysical environment ( e.g., produced by earthquakes, lightning, wind, rain, waves) make up the natural contributions to the total acoustics of a place. These acoustic conditions, termed acoustic habitat, are one attribute of an animal's total habitat.

    Soundscapes are also defined by, and acoustic habitat influenced by, the total contribution of anthropogenic sound. This may include incidental emissions from sources such as vessel traffic, or may be intentionally introduced to the marine environment for data acquisition purposes (as in the use of airgun arrays). Anthropogenic noise varies widely in its frequency content, duration, and loudness and these characteristics greatly influence the potential habitat-mediated effects to marine mammals (please see also the previous discussion on masking under Acoustic Effects ), which may range from local effects for brief periods of time to chronic effects over large areas and for long durations. Depending on the extent of effects to habitat, animals may alter their communications signals (thereby potentially expending additional energy) or miss acoustic cues (either conspecific or adventitious). For more detail on these concepts see, e.g., Barber et al., 2010; Pijanowski et al., 2011; Francis and Barber, 2013; Lillis et al., 2014.

    Problems arising from a failure to detect cues are more likely to occur when noise stimuli are chronic and overlap with biologically relevant cues used for communication, orientation, and predator/prey detection (Francis and Barber, 2013). Although the signals emitted by seismic airgun arrays are generally low frequency, they would also likely be of short duration and transient in any given area due to the nature of these surveys. As described previously, exploratory surveys such as this one cover a large area but would be transient rather than focused in a given location over time and therefore would not be considered chronic in any given location.

    In summary, activities associated with the proposed action are not likely to have a permanent, adverse effect on any fish habitat or populations of fish species or on the quality of acoustic habitat. Thus, any impacts to marine mammal habitat are not expected to cause significant or long-term consequences for individual marine mammals or their populations. Start Printed Page 71443

    Estimated Take

    This section provides an estimate of the number of incidental takes proposed for authorization through this IHA, which will inform both NMFS' consideration of “small numbers” and the negligible impact determination.

    Harassment is the only type of take expected to result from these activities. Except with respect to certain activities not pertinent here, section 3(18) of the MMPA defines “harassment” as any act of pursuit, torment, or annoyance, which (i) has the potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering (Level B harassment).

    Authorized takes would be by Level B harassment only, as use of the acoustic sources ( i.e., seismic airgun) has the potential to result in disruption of behavioral patterns for individual marine mammals. Based on the nature of the activity and the anticipated effectiveness of the mitigation measures ( i.e., marine mammal exclusion zones) discussed in detail below in Proposed Mitigation section, Level A harassment is neither anticipated nor proposed to be authorized. As described previously, no mortality is anticipated or proposed to be authorized for this activity. Below we describe how the take is estimated.

    Generally speaking, we estimate take by considering: (1) Acoustic thresholds above which NMFS believes the best available science indicates marine mammals will be behaviorally harassed or incur some degree of permanent hearing impairment; (2) the area or volume of water that will be ensonified above these levels in a day; (3) the density or occurrence of marine mammals within these ensonified areas; and, (4) and the number of days of activities. We note that while these basic factors can contribute to a basic calculation to provide an initial prediction of takes, additional information that can qualitatively inform take estimates is also sometimes available ( e.g., previous monitoring results or average group size). Below, we describe the factors considered here in more detail and present the proposed take estimate.

    Acoustic Thresholds

    NMFS recommends the use of acoustic thresholds that identify the received level of underwater sound above which exposed marine mammals would be reasonably expected to be behaviorally harassed (equated to Level B harassment) or to incur PTS of some degree (equated to Level A harassment).

    Level B Harassment for non-explosive sources —Though significantly driven by received level, the onset of behavioral disturbance from anthropogenic noise exposure is also informed to varying degrees by other factors related to the source ( e.g., frequency, predictability, duty cycle), the environment ( e.g., bathymetry), and the receiving animals (hearing, motivation, experience, demography, behavioral context) and can be difficult to predict (Southall et al., 2007, Ellison et al., 2012). Based on what the available science indicates and the practical need to use a threshold based on a factor that is both predictable and measurable for most activities, NMFS uses a generalized acoustic threshold based on received level to estimate the onset of behavioral harassment. NMFS predicts that marine mammals are likely to be behaviorally harassed in a manner we consider Level B harassment when exposed to underwater anthropogenic noise above received levels of 120 dB re 1 μPa (rms) for continuous ( e.g., vibratory pile-driving, drilling) and above 160 dB re 1 μPa (rms) for non-explosive impulsive ( e.g., seismic airguns) or intermittent ( e.g., scientific sonar) sources.

    Scripps' proposed activity includes the use of impulsive seismic sources, and therefore the 160 dB re 1 μPa (rms) is applicable.

    Level A harassment for non-explosive sources —NMFS' Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0) (Technical Guidance, 2018) identifies dual criteria to assess auditory injury (Level A harassment) to five different marine mammal groups (based on hearing sensitivity) as a result of exposure to noise from two different types of sources (impulsive or non-impulsive). Scripps' proposed activity includes the use of impulsive seismic sources.

    These thresholds are provided in the table below. The references, analysis, and methodology used in the development of the thresholds are described in NMFS 2018 Technical Guidance, which may be accessed at https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-acoustic-technical-guidance.

    Table 3—Thresholds Identifying the Onset of Permanent Threshold Shift (PTS)

    Hearing groupPTS onset acoustic thresholds * (received level)
    ImpulsiveNon-impulsive
    Low-Frequency (LF) CetaceansCell 1: L pk,flat : 219 dB; L E,LF,24h : 183 dBCell 2: L E,LF,24h : 199 dB.
    Mid-Frequency (MF) CetaceansCell 3: L pk,flat : 230 dB; L E,MF,24h : 185 dBCell 4: L E,MF,24h : 198 dB.
    High-Frequency (HF) CetaceansCell 5: L pk,flat : 202 dB; L E,HF,24h : 155 dBCell 6: L E,HF,24h : 173 dB.
    Phocid Pinnipeds (PW)(Underwater)Cell 7: L pk,flat : 218 dB; L E,PW,24h : 185 dBCell 8: L E,PW,24h : 201 dB.
    Otariid Pinnipeds (OW)(Underwater)Cell 9: L pk,flat : 232 dB; L E,OW,24h : 203 dBCell 10: L E,OW,24h : 219 dB.
    * Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level thresholds associated with impulsive sounds, these thresholds should also be considered.
    Note: Peak sound pressure ( L pk ) has a reference value of 1 µPa, and cumulative sound exposure level ( LE ) has a reference value of 1µPa2 s. In this Table, thresholds are abbreviated to reflect American National Standards Institute standards (ANSI 2013). However, peak sound pressure is defined by ANSI as incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript “flat” is being included to indicate peak sound pressure should be flat weighted or unweighted within the generalized hearing range. The subscript associated with cumulative sound exposure level thresholds indicates the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds) and that the recommended accumulation period is 24 hours. The cumulative sound exposure level thresholds could be exceeded in a multitude of ways (i.e., varying exposure levels and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under which these acoustic thresholds will be exceeded.
    Start Printed Page 71444

    Ensonified Area

    Here, we describe operational and environmental parameters of the activity that will feed into identifying the area ensonified above the acoustic thresholds, which include source levels and transmission loss coefficient.

    The proposed survey would entail the use of a 2-airgun array with a total discharge of 90 in3 at a tow depth of 2-4 m. Lamont-Doherty Earth Observatory (L-DEO) model results are used to determine the 160 dBrms radius for the 2-airgun array in deep water (>1,000 m) down to a maximum water depth of 2,000 m. Received sound levels were predicted by L-DEO's model (Diebold et al., 2010) as a function of distance from the airguns, for the two 45 in3 airguns. This modeling approach uses ray tracing for the direct wave traveling from the array to the receiver and its associated source ghost (reflection at the air-water interface in the vicinity of the array), in a constant-velocity half-space (infinite homogenous ocean layer, unbounded by a seafloor). In addition, propagation measurements of pulses from a 36-airgun array at a tow depth of 6 m have been reported in deep water (~1,600 m), intermediate water depth on the slope (~600-1,100 m), and shallow water (~50 m) in the Gulf of Mexico in 2007-2008 (Tolstoy et al., 2009; Diebold et al., 2010).

    For deep and intermediate water cases, the field measurements cannot be used readily to derive the Level A and Level B harassment isopleths, as at those sites the calibration hydrophone was located at a roughly constant depth of 350-550 m, which may not intersect all the SPL isopleths at their widest point from the sea surface down to the maximum relevant water depth (~2,000 m) for marine mammals. At short ranges, where the direct arrivals dominate and the effects of seafloor interactions are minimal, the data at the deep sites are suitable for comparison with modeled levels at the depth of the calibration hydrophone. At longer ranges, the comparison with the model—constructed from the maximum SPL through the entire water column at varying distances from the airgun array—is the most relevant.

    In deep and intermediate water depths, comparisons at short ranges between sound levels for direct arrivals recorded by the calibration hydrophone and model results for the same array tow depth are in good agreement (see Figures 12 and 14 in Appendix H of NSF-USGS 2011). Consequently, isopleths falling within this domain can be predicted reliably by the L-DEO model, although they may be imperfectly sampled by measurements recorded at a single depth. At greater distances, the calibration data show that seafloor-reflected and sub-seafloor-refracted arrivals dominate, whereas the direct arrivals become weak and/or incoherent. Aside from local topography effects, the region around the critical distance is where the observed levels rise closest to the model curve. However, the observed sound levels are found to fall almost entirely below the model curve. Thus, analysis of the Gulf of Mexico calibration measurements demonstrates that although simple, the L-DEO model is a robust tool for conservatively estimating isopleths.

    The proposed surveys would acquire data with two 45-in3 guns at a tow depth of 2-4 m. For deep water (>1,000 m), we use the deep-water radii obtained from L-DEO model results down to a maximum water depth of 2,000 m for the airgun array with 2-m airgun separation. The radii for intermediate water depths (100-1,000 m) are derived from the deep-water ones by applying a correction factor (multiplication) of 1.5, such that observed levels at very near offsets fall below the corrected mitigation curve (see Figure 16 in Appendix H of NSF-USGS 2011). No survey effort is planned to occur in shallow water (<100 m).

    L-DEO's modeling methodology is described in greater detail in SIO's IHA application. The estimated distances to the Level B harassment isopleths for the proposed airgun configuration in each water depth category are shown in Table 4.

    Table 4—Predicted Radial Distances From R/V Justo Sierra Seismic Source to Isopleths Corresponding to Level B Harassment Threshold

    Airgun configurationWater depth (m)Predicted distances (m) to 160 dB rms SPL received sound level
    Two 45 in3 guns, 2-m separation, 4-m tow depth>1,000a  539
    100-1,000b  809
    a  Distance based on L-DEO model results.
    b  Distance based on L-DEO model results with a 1.5 × correction factor between deep and intermediate water depths.

    Predicted distances to Level A harassment isopleths, which vary based on marine mammal hearing groups, were calculated based on modeling performed by L-DEO using the NUCLEUS software program and the NMFS User Spreadsheet. The updated acoustic thresholds for onset of hearing impacts from impulsive sounds ( e.g., airguns) contained in the Technical Guidance were presented as dual metric acoustic thresholds using both SELcum and peak sound pressure metrics (NMFS 2016a). As dual metrics, NMFS considers onset of PTS (Level A harassment) to have occurred when either one of the two metrics is exceeded ( i.e., metric resulting in the largest isopleth). The SELcum metric considers both level and duration of exposure, as well as auditory weighting functions by marine mammal hearing group. In recognition of the fact that the requirement to calculate Level A harassment ensonified areas could be more technically challenging to predict due to the duration component and the use of weighting functions in the new SELcum thresholds, NMFS developed an optional User Spreadsheet that includes tools to help predict a simple isopleth that can be used in conjunction with marine mammal density or occurrence to facilitate the estimation of take numbers.

    The SELcum for the 2-GI airgun array is derived from calculating the modified farfield signature. The farfield signature is often used as a theoretical representation of the source level. To compute the farfield signature, the source level is estimated at a large distance below the array ( e.g., 9 km), and this level is back projected mathematically to a notional distance of 1 m from the array's geometrical center. However, it has been recognized that the source level from the theoretical farfield Start Printed Page 71445 signature is never physically achieved at the source when the source is an array of multiple airguns separated in space (Tolstoy et al., 2009). Near the source (at short ranges, distances <1 km), the pulses of sound pressure from each individual airgun in the source array do not stack constructively as they do for the theoretical farfield signature. The pulses from the different airguns spread out in time such that the source levels observed or modeled are the result of the summation of pulses from a few airguns, not the full array (Tolstoy et al., 2009). At larger distances, away from the source array center, sound pressure of all the airguns in the array stack coherently, but not within one time sample, resulting in smaller source levels (a few dB) than the source level derived from the farfield signature. Because the farfield signature does not take into account the interactions of the two airguns that occur near the source center and is calculated as a point source (single airgun), the modified farfield signature is a more appropriate measure of the sound source level for large arrays. For this smaller array, the modified farfield changes will be correspondingly smaller as well, but we use this method for consistency across all array sizes.

    Scripps used the same acoustic modeling as for Level B harassment with a small grid step in both the inline and depth directions to estimate the SELcum and peak SPL. The propagation modeling takes into account all airgun interactions at short distances from the source including interactions between subarrays using the NUCLEUS software to estimate the notional signature and the MATLAB software to calculate the pressure signal at each mesh point of a grid. For a more complete explanation of this modeling approach, please see “Appendix A: Determination of Mitigation Zones” in Scripps' IHA application.

    In order to more realistically incorporate the Technical Guidance's weighting functions over the seismic array's full acoustic band, unweighted spectrum data for the airgun array (modeled in 1 Hz bands) was used to make adjustments (dB) to the unweighted spectrum levels, by frequency, according to the weighting functions for each relevant marine mammal hearing group. These adjusted/weighted spectrum levels were then converted to pressures (μPa) in order to integrate them over the entire broadband spectrum, resulting in broadband weighted source levels by hearing group that could be directly incorporated within the User Spreadsheet ( i.e., to override the Spreadsheet's more simple weighting factor adjustment). Using the User Spreadsheet's “safe distance” methodology for mobile sources (described by Sivle et al., 2014) with the hearing group-specific weighted source levels, and inputs assuming spherical spreading propagation and source velocities and shot intervals provided in Scripps' IHA application, potential radial distances to auditory injury zones were calculated for PTS thresholds. Calculated Level A harassment zones for all cetacean hearing groups are presented in Table 5 below (no pinnipeds are expected to occur in the survey area).

    Table 5—Modeled Radial Distances ( m ) to Isopleths Corresponding to Level A Harassment Thresholds

    Functional hearing groupLevel A harassment zone (m)
    Low-frequency cetaceans 19.9
    Mid-frequency cetaceans1.0
    High-frequency cetaceans34.6
    1  Low-frequency cetaceans are not expected to be encountered or taken by Level A or Level B harassment during the proposed survey.

    Note that because of some of the assumptions included in the methods used, isopleths produced may be overestimates to some degree, which will ultimately result in some degree of overestimate of the potential for take by Level A harassment. However, these tools offer the best way to predict appropriate isopleths when more sophisticated 3D modeling methods are not available, and NMFS continues to develop ways to quantitatively refine these tools and will qualitatively address the output where appropriate. For mobile sources, such as the proposed seismic survey, the User Spreadsheet predicts the closest distance at which a stationary animal would not incur PTS if the sound source traveled by the animal in a straight line at a constant speed.

    Auditory injury is unlikely to occur for any functional hearing group given the very small modeled zones of injury (all estimated zones less than 35 meters (m)), and we therefore expect the potential for Level A harassment to be de minimis, even before the likely moderating effects of aversion and/or other compensatory behaviors ( e.g., Nachtigall et al., 2018) are considered. Additionally, the method of estimating take as described below (see Take Calculation and Estimation ) yielded only two species/guilds with calculated takes by Level A harassment, and the highest calculated take of those two groups was only two takes by Level A harassment (Table 9). We do not believe that Level A harassment is a likely outcome for any hearing group and are not proposing to authorize Level A harassment for any species.

    Marine Mammal Occurrence

    In this section we provide the information about the presence, density, or group dynamics of marine mammals that will inform the take calculations.

    For the proposed survey area in the southeast Gulf of Mexico, Scripps determined that the best source of density data for marine mammal species that might be encountered in the project area was habitat-based density modeling conducted by Roberts et al. (2016). The Roberts et al. (2016) data provide abundance estimates for species or species guilds within 10 km × 10 km grid cells (100 square kilometer (km2 )) within the U.S. EEZ in the Gulf of Mexico and Atlantic Ocean on a monthly or annual basis, depending on the species and location. In the Gulf of Mexico, marine mammals do not migrate seasonally, so a single estimate for each grid cell is provided and represents the predicted abundance of that species in that 100 km2 location at any time of year.

    As the planned survey lines are outside of the U.S. EEZ, they do not directly overlap the available spatial density data. However, some of the survey lines occur near the U.S. EEZ, and the distribution and abundance of species in U.S. EEZ waters are assumed representative of those in the nearby survey area. To select a representative sample of grid cells for the calculation of densities in three different water depth categories (>100 m, 100-1,000 m, and >1,000 m), a 200-km perimeter around the survey lines was created in GIS. The areas within this perimeter within the three depth categories was then used to select grid cells containing the estimates for each species in the Roberts et al. (2016) data ( i.e., <100 m, n = 157 grid cells; 100-1,000, n = 169 grid cells; >1,000 m, n = 410 grid cells). The average abundance for each species in each water depth category was calculated as the mean value of the grid cells within each category and then converted to density (individuals/1 km2 ) by dividing by 100 km2 . Estimated densities for marine mammal species that could occur in the project area are shown in Table 6. Start Printed Page 71446

    Table 6—Marine Mammal Densities in the Proposed Survey Area

    SpeciesEstimated density (#/km2 )
    Intermediate water 100-1,000 mDeep water >1,000 m
    Sperm whale0.003840.00579
    Atlantic spotted dolphin0.070220.00001
    Beaked whale guild a0.004980.00882
    Common bottlenose dolphin0.180430.00566
    Clymene dolphin0.003250.00403
    False killer whale0.007440.00748
    Frasers dolphin0.003860.00389
    Killer whale0.000070.00082
    Melon-headed whale0.006240.01186
    Pantropical spotted dolphin0.147640.31353
    Short-finned pilot whales0.006360.00128
    Pygmy killer whale0.002010.00648
    Risso's dolphin0.023150.00748
    Rough-toothed dolphin0.008900.00768
    Spinner dolphin0.157230.00412
    Striped dolphin0.002120.01268
    Kogia spp. b0.010520.00490
    a  Includes Cuvier's beaked whale, Blainville's beaked whale, and Gervais' beaked whale.
    b  Pygmy sperm whales and dwarf sperm whales.

    Take Calculation and Estimation

    Here we describe how the information provided above is brought together to produce a quantitative take estimate.

    The area expected to be ensonified was determined by entering the planned survey lines into ArcGIS and then using GIS to identify the relevant ensonified areas by “drawing” the 160-dB threshold buffer around each seismic line according to the depth category in which the lines occurred. The total ensonified area within each depth category was then divided by the total number of survey days to provide the proportional daily ensonified area within each depth category. The total ensonified area in each depth class was multiplied by 1.25 to add an additional 25 percent contingency to allow for additional airgun operations such as testing of the source or re-surveying lines with poor data quality. Due to uncertainties with respect to permitting for surveys in Cuban waters, ensonified areas were calculated separately for transect lines in Mexican and Cuban EEZs, for which 4.2 and 5.5 survey days were estimated, respectively (Table 7). If Scripps is unable to operate within the Cuban EEZ, they will conduct the entire survey within the Mexican EEZ, with the same estimated daily proportions of survey activity in each depth strata occurring over a total of 9.7 survey days. This scenario yields a total ensonified area of 3,595.6 km2 , with 1,848.6 km2 in intermediate waters (100-1,000 m) and 1,747.0 km2 in deep waters (>1,000 m).

    Table 7—Areas ( km2 ) in Mexican and Cuban EEZs To Be Ensonified Above Level B Harassment Threshold

    Water depth categoryRelevant isopleth (m)Ensonified area in Mexican EEZ (km2 )Ensonified area in Cuban EEZ (km2 )Total ensonified area (km2 )Total area with 25% increase (km2 )
    Intermediate (100-1,000 m)809640.350640.35800.44
    Deep (>1,000)539605.141,298.091,903.232,379.04
    Total1,245.491,298.092,543.583,179.48

    To estimate the total number of possible exposures, the total ensonified area within each depth category is multiplied by the densities in each depth category. Scripps does not expect to know whether surveying within Cuban waters will be permitted until immediately before the research cruise, therefore NMFS is proposing to authorize the highest calculated take number for each species across the two survey scenarios (Table 8).

    Table 8—Calculated and Proposed Takes by Level B Harassment, and Percentage of Population Exposed

    SpeciesMexico and Cuba lines calculated Level BMexico and Cuba lines calculated Level AMexico only calculated Level BMexico only calculated Level AProposed Level BProposed Level APopulation size aPercent of population
    Sperm whale1701701702,2070.78
    Atlantic spotted dolphin5601300130074,7850.17
    Beaked whale guild c2502502503,7680.66
    Common bottlenose dolphin158034303430176,1080.20
    Clymene dolphinb  900b  900b  90011,8950.76
    False killer whaleb  280b  280b  2803,2040.87
    Frasers dolphinb  650b  650b  6501,6653.90
    Start Printed Page 71447
    Killer whaleb  70b  70b  702672.62
    Melon-headed whaleb  1000b  1000b  10007,0031.43
    Pantropical spotted dolphin862282018640102,3610.84
    Pygmy killer whaleb  190b  190b  1902,1260.89
    Risso's dolphin3605605603,7641.48
    Rough-toothed dolphinb  560b  560b  5604,8531.15
    Short-finned pilot whalesb  250b  250b  2501,9811.26
    Spinner dolphin13602980298025,1141.19
    Striped dolphinb  460b  460b  4605,2290.88
    Kogia spp.1912712804,3730.64
    a  Best abundance estimate. For most taxa, the best abundance estimate for purposes of comparison with take estimates is considered here to be the model-predicted abundance (Roberts et al., 2016). For those taxa where a density surface model predicting abundance by month was produced, the maximum mean seasonal abundance was used. For those taxa where abundance is not predicted by month, only mean annual abundance is available. For the killer whale, the larger estimated SAR abundance estimate is used.
    b  Calculated and proposed take increased to mean group size as presented by Maze-Foley and Mullin (2006).
    c  Cuvier's, Blainville's, and Gervais' beaked whales.

    Proposed Mitigation

    In order to issue an IHA under Section 101(a)(5)(D) of the MMPA, NMFS must set forth the permissible methods of taking pursuant to the activity, and other means of effecting the least practicable impact on the species or stock and its habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stock for taking for certain subsistence uses (latter not applicable for this action). NMFS regulations require applicants for incidental take authorizations to include information about the availability and feasibility (economic and technological) of equipment, methods, and manner of conducting the activity or other means of effecting the least practicable adverse impact upon the affected species or stocks and their habitat (50 CFR 216.104(a)(11)).

    In evaluating how mitigation may or may not be appropriate to ensure the least practicable adverse impact on species or stocks and their habitat, as well as subsistence uses where applicable, we carefully consider two primary factors:

    (1) The manner in which, and the degree to which, the successful implementation of the measure(s) is expected to reduce impacts to marine mammals, marine mammal species or stocks, and their habitat. This considers the nature of the potential adverse impact being mitigated (likelihood, scope, range). It further considers the likelihood that the measure will be effective if implemented (probability of accomplishing the mitigating result if implemented as planned), the likelihood of effective implementation (probability implemented as planned), and;

    (2) The practicability of the measures for applicant implementation, which may consider such things as cost, impact on operations, and, in the case of a military readiness activity, personnel safety, practicality of implementation, and impact on the effectiveness of the military readiness activity.

    Scripps indicated that it reviewed mitigation measures employed during seismic research surveys authorized by NMFS under previous incidental harassment authorizations, as well as recommended best practices in Richardson et al. (1995), Pierson et al. (1998), Weir and Dolman (2007), Nowacek et al. (2013), Wright (2014), and Wright and Cosentino (2015), and has incorporated a suite of proposed mitigation measures into their project description based on the above sources.

    To reduce the potential for disturbance from acoustic stimuli associated with the activities, Scripps has proposed to implement mitigation measures for marine mammals. Mitigation measures that would be adopted during the proposed surveys include: (1) Vessel-based visual mitigation monitoring; (2) Establishment of a marine mammal exclusion zone (EZ) and buffer zone; (3) shutdown procedures; (4) ramp-up procedures; and (4) vessel strike avoidance measures.

    Vessel-Based Visual Mitigation Monitoring

    Visual monitoring requires the use of trained observers (herein referred to as visual Protected Species Observers (PSOs)) to scan the ocean surface visually for the presence of marine mammals. PSO observations would take place during all daytime airgun operations and nighttime start ups (if applicable) of the airguns. If airguns are operating throughout the night, observations would begin 30 minutes prior to sunrise. If airguns are operating after sunset, observations would continue until 30 minutes following sunset. Following a shutdown for any reason, observations would occur for at least 30 minutes prior to the planned start of airgun operations. Observations would also occur for 30 minutes after airgun operations cease for any reason. Observations would also be made during daytime periods when the R/V Justo Sierra is underway without seismic operations, such as during transits, to allow for comparison of sighting rates and behavior with and without airgun operations and between acquisition periods. Airgun operations would be suspended when marine mammals are observed within, or about to enter, the designated exclusion zone (EZ) (as described below).

    During seismic operations, two visual PSOs would be on duty and conduct visual observations at all times during daylight hours ( i.e., from 30 minutes prior to sunrise through 30 minutes following sunset). PSO(s) would be on duty in shifts of duration no longer than 4 hours. Other vessel crew would also be instructed to assist in detecting marine mammals and in implementing mitigation requirements (if practical). Before the start of the seismic survey, the crew would be given additional instruction in detecting marine mammals and implementing mitigation requirements.

    The R/V Justo Sierra is a suitable platform from which PSOs would watch for marine mammals. Standard equipment for marine mammal observers would be 7 x 50 reticule binoculars and optical range finders. At night, night-vision equipment would be available. The observers would be in communication with ship's officers on Start Printed Page 71448 the bridge and scientists in the vessel's operations laboratory, so they can advise promptly of the need for vessel strike avoidance measures (see Vessel Strike Avoidance Measures below) or seismic source shutdown.

    The PSOs must have no tasks other than to conduct observational effort, record observational data, and communicate with and instruct relevant vessel crew with regard to the presence of marine mammals and mitigation requirements. PSO resumes shall be provided to NMFS for approval. At least one PSO must have a minimum of 90 days prior at-sea experience working as a PSO during a seismic survey. One “experienced” visual PSO will be designated as the lead for the entire protected species observation team. The lead will serve as primary point of contact for the vessel operator.

    Exclusion Zone (EZ) and Buffer Zone

    An EZ is a defined area within which occurrence of a marine mammal triggers mitigation action intended to reduce the potential for certain outcomes, e.g., auditory injury, disruption of critical behaviors. The PSOs would establish a minimum EZ with a 100 m radius for the airgun array. The 100-m EZ would be based on radial distance from any element of the airgun array (rather than being based around the vessel itself). With certain exceptions (described below), if a marine mammal appears within, enters, or appears on a course to enter this zone, the acoustic source would be shut down (see Shutdown Procedures below).

    The 100-m radial distance of the standard EZ is precautionary in the sense that it would be expected to contain sound exceeding injury criteria for all marine mammal hearing groups (Table 5) while also providing a consistent, reasonably observable zone within which PSOs would typically be able to conduct effective observational effort. In the 2011 Programmatic Environmental Impact Statement for marine scientific research funded by the National Science Foundation or the U.S. Geological Survey (NSF-USGS 2011), Alternative B (the Preferred Alternative) conservatively applied a 100-m EZ for all low-energy acoustic sources in water depths >100 m, with low-energy acoustic sources defined as any towed acoustic source with a single or a pair of clustered airguns with individual volumes of ≤250 in3 . Thus the 100-m EZ proposed for this survey is consistent with the PEIS.

    Our intent in prescribing a standard EZ distance is to (1) encompass zones within which auditory injury could occur on the basis of instantaneous exposure; (2) provide additional protection from the potential for more severe behavioral reactions ( e.g., panic, antipredator response) for marine mammals at relatively close range to the acoustic source; (3) provide consistency for PSOs, who need to monitor and implement the EZ; and (4) define a distance within which detection probabilities are reasonably high for most species under typical conditions.

    PSOs will also establish and monitor a 100-m buffer zone beyond the EZ (for a total of 200 m). During use of the acoustic source, occurrence of marine mammals within the buffer zone (but outside the EZ) will be communicated to the operator to prepare for potential shutdown of the acoustic source. The buffer zone is discussed further under Ramp-Up Procedures below.

    An extended EZ of 500 m is proposed for all beaked whales and Kogia species as well as for aggregations of six or more large whales ( i.e., sperm whale) or a large whale with a calf (calf defined as an animal less than two-thirds the body size of an adult observed to be in close association with an adult).

    Ramp-Up Procedures

    Ramp-up of an acoustic source is intended to provide a gradual increase in sound levels following a shutdown, enabling animals to move away from the source if the signal is sufficiently aversive prior to its reaching full intensity. Ramp-up would be required after the array is shut down for any reason for longer than 15 minutes. Ramp-up would begin with the activation of one 45 in3 airgun, with the second 45 in3 airgun activated after 5 minutes.

    Two PSOs would be required to monitor during ramp-up. During ramp up, the PSOs would monitor the EZ, and if marine mammals were observed within the EZ or buffer zone, a shutdown would be implemented as though the full array were operational. If airguns have been shut down due to PSO detection of a marine mammal within or approaching the EZ, ramp-up would not be initiated until all marine mammals have cleared the EZ, during the day or night. Criteria for clearing the EZ would be as described above.

    Thirty minutes of pre-start clearance observation are required prior to ramp-up for any shutdown of longer than 30 minutes ( i.e., when the array is shut down during transit from one line to another). This 30-minute pre-start clearance period may occur during any vessel activity ( i.e., transit). If a marine mammal were observed within or approaching the 200-m buffer or 500-m extended EZ during this pre-start clearance period, ramp-up would not be initiated until all marine mammals cleared the relevant area. Criteria for clearing the EZ would be as described above. If the airgun array has been shut down for reasons other than mitigation ( e.g., mechanical difficulty) for a period of less than 30 minutes, it may be activated again without ramp-up if PSOs have maintained constant visual observation and no detections of any marine mammal have occurred within the EZ or buffer zone. Ramp-up would be planned to occur during periods of good visibility when possible. However, ramp-up would be allowed at night and during poor visibility if the 100 m EZ and 200 m buffer zone have been monitored by visual PSOs for 30 minutes prior to ramp-up.

    The operator would be required to notify a designated PSO of the planned start of ramp-up as agreed-upon with the lead PSO; the notification time should not be less than 60 minutes prior to the planned ramp-up. A designated PSO must be notified again immediately prior to initiating ramp-up procedures and the operator must receive confirmation from the PSO to proceed. The operator must provide information to PSOs documenting that appropriate procedures were followed. Following deactivation of the array for reasons other than mitigation, the operator would be required to communicate the near-term operational plan to the lead PSO with justification for any planned nighttime ramp-up.

    Shutdown Procedures

    If a marine mammal is detected outside the EZ but is likely to enter the EZ, the airguns would be shut down before the animal is within the EZ. Likewise, if a marine mammal is already within the EZ when first detected, the airguns would be shut down immediately.

    Following a shutdown, airgun activity would not resume until the marine mammal has cleared the EZ. The animal would be considered to have cleared the EZ if the following conditions have been met:

    • It is visually observed to have departed the EZ;
    • it has not been seen within the EZ for 15 min in the case of small odontocetes; or
    • it has not been seen within the EZ for 30 min in the case of large odontocetes, including sperm and beaked whales.

    This shutdown requirement would be in place for all marine mammals, with the exception of small delphinids under certain circumstances. As defined here, the small delphinid group is intended to Start Printed Page 71449 encompass those members of the Family Delphinidae most likely to voluntarily approach the source vessel for purposes of interacting with the vessel and/or airgun array ( e.g., bow riding). This exception to the shutdown requirement would apply solely to specific genera of small dolphins— Lagenodelphis, Stenella, Steno, and Tursiops.

    We include this small delphinid exception because shutdown requirements for small delphinids under all circumstances represent practicability concerns without likely commensurate benefits for the animals in question. Small delphinids are generally the most commonly observed marine mammals in the specific geographic region and would typically be the only marine mammals likely to intentionally approach the vessel. As described above, auditory injury is extremely unlikely to occur for mid-frequency cetaceans ( e.g., delphinids), as this group is relatively insensitive to sound produced at the predominant frequencies in an airgun pulse while also having a relatively high threshold for the onset of auditory injury ( i.e., permanent threshold shift).

    A large body of anecdotal evidence indicates that small delphinids commonly approach vessels and/or towed arrays during active sound production for purposes of bow riding, with no apparent effect observed in those delphinids ( e.g., Barkaszi et al., 2012, 2018). The potential for increased shutdowns resulting from such a measure would require the R/V Justo Sierra to revisit the missed track line to reacquire data, resulting in an overall increase in the total sound energy input to the marine environment and an increase in the total duration over which the survey is active in a given area. Although other mid-frequency hearing specialists ( e.g., large delphinids) are no more likely to incur auditory injury than are small delphinids, they are much less likely to approach vessels. Therefore, retaining a shutdown requirement for large delphinids would not have similar impacts in terms of either practicability for the applicant or corollary increase in sound energy output and time on the water. We do anticipate some benefit for a shutdown requirement for large delphinids in that it simplifies somewhat the total range of decision-making for PSOs and may preclude any potential for physiological effects other than to the auditory system as well as some more severe behavioral reactions for any such animals in close proximity to the source vessel.

    Visual PSOs shall use best professional judgment in making the decision to call for a shutdown if there is uncertainty regarding identification ( i.e., whether the observed marine mammal(s) belongs to one of the delphinid genera for which shutdown is waived or one of the species with a larger EZ).

    Shutdown of the acoustic source would also be required upon observation of a species for which authorization has not been granted ( e.g., baleen whales), or a species for which authorization has been granted but the authorized number of takes are met, observed approaching or within the Level B harassment zones.

    Vessel Strike Avoidance Measures

    Vessel strike avoidance measures are intended to minimize the potential for collisions with marine mammals. These requirements do not apply in any case where compliance would create an imminent and serious threat to a person or vessel or to the extent that a vessel is restricted in its ability to maneuver and, because of the restriction, cannot comply.

    The proposed measures include the following: Vessel operator and crew would maintain a vigilant watch for all marine mammals and slow down or stop the vessel or alter course to avoid striking any marine mammal. A visual observer aboard the vessel would monitor a vessel strike avoidance zone around the vessel according to the parameters stated below. Visual observers monitoring the vessel strike avoidance zone would be either third-party observers or crew members, but crew members responsible for these duties would be provided sufficient training to distinguish marine mammals from other phenomena. Vessel strike avoidance measures would be followed during surveys and while in transit.

    The vessel would maintain a minimum separation distance of 100 m from large whales ( i.e., baleen whales and sperm whales). If a large whale is within 100 m of the vessel, the vessel would reduce speed and shift the engine to neutral, and would not engage the engines until the whale has moved outside of the vessel's path and the minimum separation distance has been established. If the vessel is stationary, the vessel would not engage engines until the whale(s) has moved out of the vessel's path and beyond 100 m. The vessel would maintain a minimum separation distance of 50 m from all other marine mammals, to the extent practicable. If an animal is encountered during transit, the vessel would attempt to remain parallel to the animal's course, avoiding excessive speed or abrupt changes in course. Vessel speeds would be reduced to 10 knots or less when mother/calf pairs, pods, or large assemblages of cetaceans are observed near the vessel.

    Based on our evaluation of the applicant's proposed measures, NMFS has preliminarily determined that the proposed mitigation measures provide the means effecting the least practicable impact on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance.

    Proposed Monitoring and Reporting

    In order to issue an IHA for an activity, Section 101(a)(5)(D) of the MMPA states that NMFS must set forth requirements pertaining to the monitoring and reporting of such taking. The MMPA implementing regulations at 50 CFR 216.104(a)(13) indicate that requests for authorizations must include the suggested means of accomplishing the necessary monitoring and reporting that will result in increased knowledge of the species and of the level of taking or impacts on populations of marine mammals that are expected to be present in the proposed action area. Effective reporting is critical both to compliance as well as ensuring that the most value is obtained from the required monitoring.

    Monitoring and reporting requirements prescribed by NMFS should contribute to improved understanding of one or more of the following:

    • Occurrence of marine mammal species or stocks in the area in which take is anticipated ( e.g., presence, abundance, distribution, density).

    • Nature, scope, or context of likely marine mammal exposure to potential stressors/impacts (individual or cumulative, acute or chronic), through better understanding of: (1) Action or environment ( e.g., source characterization, propagation, ambient noise); (2) affected species ( e.g., life history, dive patterns); (3) co-occurrence of marine mammal species with the action; or (4) biological or behavioral context of exposure ( e.g., age, calving or feeding areas).

    • Individual marine mammal responses (behavioral or physiological) to acoustic stressors (acute, chronic, or cumulative), other stressors, or cumulative impacts from multiple stressors.
    • How anticipated responses to stressors impact either: (1) Long-term fitness and survival of individual marine mammals; or (2) populations, species, or stocks.

    • Effects on marine mammal habitat ( e.g., marine mammal prey species, Start Printed Page 71450 acoustic habitat, or other important physical components of marine mammal habitat).

    • Mitigation and monitoring effectiveness.

    Scripps submitted a marine mammal monitoring and reporting plan in their IHA application. Monitoring that is designed specifically to facilitate mitigation measures, such as monitoring of the EZ to inform potential shutdowns of the airgun array, are described above and are not repeated here. Scripps' monitoring and reporting plan includes the following measures:

    Vessel-Based Visual Monitoring

    As described above, PSO observations would take place during daytime airgun operations and nighttime start-ups (if applicable) of the airguns. During seismic operations, visual PSOs would be based aboard the R/V Justo Sierra. PSOs would be appointed by Scripps with NMFS approval. The PSOs must have successfully completed relevant training, including completion of all required coursework and passing a written and/or oral examination developed for the training program, and must have successfully attained a bachelor's degree from an accredited college or university with a major in one of the natural sciences and a minimum of 30 semester hours or equivalent in the biological sciences and at least one undergraduate course in math or statistics. The educational requirements may be waived if the PSO has acquired the relevant skills through alternate training, including (1) secondary education and/or experience comparable to PSO duties; (2) previous work experience conducting academic, commercial, or government-sponsored marine mammal surveys; or (3) previous work experience as a PSO; the PSO should demonstrate good standing and consistently good performance of PSO duties.

    During seismic operations in daylight hours (30 minutes before sunrise through 30 minutes after sunset), two PSOs would monitor for marine mammals around the seismic vessel. PSOs would be on duty in shifts of duration no longer than 4 hours. Other crew would also be instructed to assist in detecting marine mammals and in implementing mitigation requirements (if practical). During daytime, PSOs would scan the area around the vessel systematically with reticle binoculars ( e.g., 7x50 Fujinon) and with the naked eye. At night, PSOs would be equipped with night-vision equipment.

    For data collection purposes, PSOs shall use standardized data collection forms, whether hard copy or electronic. PSOs shall record detailed information about any implementation of mitigation requirements, including the distance of animals to the acoustic source and description of specific actions that ensued, the behavior of the animal(s), any observed changes in behavior before and after implementation of mitigation, and if shutdown was implemented, the length of time before any subsequent ramp-up of the acoustic source. If required mitigation was not implemented, PSOs should record a description of the circumstances. At a minimum, the following information must be recorded:

    • Vessel names (source vessel and other vessels associated with survey) and call signs;
    • PSO names and affiliations;
    • Dates of departures and returns to port with port name;
    • Date and participants of PSO briefings;
    • Dates and times (Greenwich Mean Time) of survey effort and times corresponding with PSO effort;
    • Vessel location (latitude/longitude) when survey effort began and ended and vessel location at beginning and end of visual PSO duty shifts;
    • Vessel heading and speed at beginning and end of visual PSO duty shifts and upon any line change;
    • Environmental conditions while on visual survey (at beginning and end of PSO shift and whenever conditions changed significantly), including BSS and any other relevant weather conditions including cloud cover, fog, sun glare, and overall visibility to the horizon;

    • Factors that may have contributed to impaired observations during each PSO shift change or as needed as environmental conditions changed ( e.g., vessel traffic, equipment malfunctions); and

    • Survey activity information, such as acoustic source power output while in operation, number and volume of airguns operating in the array, tow depth of the array, and any other notes of significance ( i.e., pre-clearance, ramp-up, shutdown, testing, shooting, ramp-up completion, end of operations, streamers, etc.).

    The following information should be recorded upon visual observation of any protected species:

    • Watch status (sighting made by PSO on/off effort, opportunistic, crew, alternate vessel/platform);
    • PSO who sighted the animal;
    • Time of sighting;
    • Vessel location at time of sighting;
    • Water depth;
    • Direction of vessel's travel (compass direction);
    • Direction of animal's travel relative to the vessel;
    • Pace of the animal;
    • Estimated distance to the animal and its heading relative to vessel at initial sighting;

    • Identification of the animal ( e.g., genus/species, lowest possible taxonomic level, or unidentified) and the composition of the group if there is a mix of species;

    • Estimated number of animals (high/low/best);
    • Estimated number of animals by cohort (adults, yearlings, juveniles, calves, group composition, etc.);
    • Description (as many distinguishing features as possible of each individual seen, including length, shape, color, pattern, scars or markings, shape and size of dorsal fin, shape of head, and blow characteristics);

    • Detailed behavior observations ( e.g., number of blows/breaths, number of surfaces, breaching, spyhopping, diving, feeding, traveling; as explicit and detailed as possible; note any observed changes in behavior);

    • Animal's closest point of approach (CPA) and/or closest distance from any element of the acoustic source;

    • Platform activity at time of sighting ( e.g., deploying, recovering, testing, shooting, data acquisition, other); and

    • Description of any actions implemented in response to the sighting ( e.g., delays, shutdown, ramp-up) and time and location of the action.

    Reporting

    A report would be submitted to NMFS within 90 days after the end of the cruise. The report would describe the operations that were conducted and sightings of marine mammals near the operations. The report would provide full documentation of methods, results, and interpretation pertaining to all monitoring. The 90-day report would summarize the dates and locations of seismic operations, and all marine mammal sightings (dates, times, locations, activities, associated seismic survey activities).

    The draft report shall also include geo-referenced time-stamped vessel tracklines for all time periods during which airguns were operating. Tracklines should include points recording any change in airgun status ( e.g., when the airguns began operating, when they were turned off, or when they changed from full array to single gun or vice versa). GIS files shall be provided in ESRI shapefile format and include the UTC date and time, latitude in decimal degrees, and longitude in decimal degrees. All coordinates shall be referenced to the WGS84 geographic Start Printed Page 71451 coordinate system. In addition to the report, all raw observational data shall be made available to NMFS. The report must summarize the data collected as described above and in the IHA. A final report must be submitted within 30 days following resolution of any comments on the draft report.

    Reporting Injured or Dead Marine Mammals

    Discovery of injured or dead marine mammals —In the event that personnel involved in survey activities covered by the authorization discover an injured or dead marine mammal, Scripps shall report the incident to the Office of Protected Resources (OPR), NMFS and to the NMFS Southeast Regional Stranding Coordinator as soon as feasible. The report must include the following information:

    • Time, date, and location (latitude/longitude) of the first discovery (and updated location information if known and applicable);
    • Species identification (if known) or description of the animal(s) involved;
    • Condition of the animal(s) (including carcass condition if the animal is dead);
    • Observed behaviors of the animal(s), if alive;
    • If available, photographs or video footage of the animal(s); and
    • General circumstances under which the animal was discovered.

    Vessel strike —In the event of a ship strike of a marine mammal by any vessel involved in the activities covered by the authorization, Scripps shall report the incident to OPR, NMFS and to the NMFS Southeast Regional Stranding Coordinator as soon as feasible. The report must include the following information:

    • Time, date, and location (latitude/longitude) of the incident;
    • Vessel's speed during and leading up to the incident;
    • Vessel's course/heading and what operations were being conducted (if applicable);
    • Status of all sound sources in use;
    • Description of avoidance measures/requirements that were in place at the time of the strike and what additional measure were taken, if any, to avoid strike;

    • Environmental conditions ( e.g., wind speed and direction, Beaufort sea state, cloud cover, visibility) immediately preceding the strike;

    • Species identification (if known) or description of the animal(s) involved;
    • Estimated size and length of the animal that was struck;
    • Description of the behavior of the animal immediately preceding and following the strike;
    • If available, description of the presence and behavior of any other marine mammals present immediately preceding the strike;

    • Estimated fate of the animal ( e.g., dead, injured but alive, injured and moving, blood or tissue observed in the water, status unknown, disappeared); and

    • To the extent practicable, photographs or video footage of the animal(s).

    Negligible Impact Analysis and Determination

    NMFS has defined negligible impact as an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival (50 CFR 216.103). A negligible impact finding is based on the lack of likely adverse effects on annual rates of recruitment or survival ( i.e., population-level effects). An estimate of the number of takes alone is not enough information on which to base an impact determination. In addition to considering estimates of the number of marine mammals that might be “taken” through harassment, NMFS considers other factors, such as the likely nature of any responses ( e.g., intensity, duration), the context of any responses ( e.g., critical reproductive time or location, migration), as well as effects on habitat, and the likely effectiveness of the mitigation. We also assess the number, intensity, and context of estimated takes by evaluating this information relative to population status. Consistent with the 1989 preamble for NMFS's implementing regulations (54 FR 40338; September 29, 1989), the impacts from other past and ongoing anthropogenic activities are incorporated into this analysis via their impacts on the environmental baseline ( e.g., as reflected in the regulatory status of the species, population size and growth rate where known, ongoing sources of human-caused mortality, or ambient noise levels).

    To avoid repetition, our analysis applies to all species listed in Table 1, given that NMFS expects the anticipated effects of the planned geophysical survey to be similar in nature. Where there are meaningful differences between species or stocks, or groups of species, in anticipated individual responses to activities, impact of expected take on the population due to differences in population status, or impacts on habitat, NMFS has identified species-specific factors to inform the analysis.

    NMFS does not anticipate that injury, serious injury or mortality would occur as a result of Scripps' planned survey, even in the absence of mitigation, and none would be authorized. Similarly, non-auditory physical effects, stranding, and vessel strike are not expected to occur. Although a few incidents of Level A harassment were predicted through the quantitative exposure estimation process (see Estimated Take), NMFS has determined that this is not a realistic result due to the small estimated Level A harassment zones for the species (no greater than approximately 50 m) and the proposed mitigation requirements, and no Level A harassment is proposed for authorization. These estimated zones are larger than what would realistically occur, as discussed in the Estimated Take section.

    We expect that takes would be in the form of short-term Level B behavioral harassment in the form of temporary avoidance of the area or decreased foraging (if such activity were occurring), reactions that are considered to be of low severity and with no lasting biological consequences ( e.g., Southall et al., 2007, Ellison et al., 2012).

    Marine mammal habitat may be impacted by elevated sound levels, but these impacts would be temporary. Prey species are mobile and are broadly distributed throughout the project area; therefore, marine mammals that may be temporarily displaced during survey activities are expected to be able to resume foraging once they have moved away from areas with disturbing levels of underwater noise. Because of the relatively short duration (up to 12 days) and temporary nature of the disturbance, the availability of similar habitat and resources in the surrounding area, the impacts to marine mammals and the food sources that they utilize are not expected to cause significant or long-term consequences for individual marine mammals or their populations. No biologically important areas, designated critical habitat, or other habitat of known significance would be impacted by the planned activities.

    Negligible Impact Conclusions

    The proposed survey would be of short duration (up to 12 days of seismic operations), and the acoustic “footprint” of the proposed survey would be small relative to the ranges of the marine mammals that would potentially be affected. Sound levels would increase in the marine environment in a relatively small area surrounding the vessel compared to the range of the marine mammals within the proposed survey area. Short-term exposures to survey operations are expected to only Start Printed Page 71452 temporarily affect marine mammal behavior in the form of avoidance, and the potential for longer-term avoidance of important areas is limited. Short-term exposures to survey operations are not likely to impact marine mammal behavior, and the potential for longer-term avoidance of important areas is limited.

    The proposed mitigation measures are expected to reduce the number and/or severity of takes by allowing for detection of marine mammals in the vicinity of the vessel by visual observers, and by minimizing the severity of any potential exposures via shutdowns of the airgun array.

    NMFS concludes that exposures to marine mammal species and stocks due to Scripps' proposed survey would result in only short-term (temporary and short in duration) effects to individuals exposed, over relatively small areas of the affected animals' ranges. Animals may temporarily avoid the immediate area, but are not expected to permanently abandon the area. Major shifts in habitat use, distribution, or foraging success are not expected. NMFS does not anticipate the proposed take estimates to impact annual rates of recruitment or survival.

    In summary and as described above, the following factors primarily support our preliminary determination that the impacts resulting from this activity are not expected to adversely affect the species or stock through effects on annual rates of recruitment or survival:

    • No Level A harassment, serious injury or mortality is anticipated or proposed to be authorized;
    • The proposed activity is temporary and of relatively short duration (up to 12 days);
    • The anticipated impacts of the proposed activity on marine mammals would primarily be temporary behavioral changes in the form of avoidance of the area around the survey vessel;
    • The availability of alternate areas of similar habitat value for marine mammals to temporarily vacate the survey area during the proposed survey to avoid exposure to sounds from the activity;
    • The potential adverse effects on fish or invertebrate species that serve as prey species for marine mammals from the proposed survey would be temporary and spatially limited, and impacts to marine mammal foraging would be minimal; and
    • The proposed mitigation measures, including visual monitoring, shutdowns, ramp-up, and prescribed measures based on energy size are expected to minimize potential impacts to marine mammals (both amount and severity).

    Based on the analysis contained herein of the likely effects of the specified activity on marine mammals and their habitat, and taking into consideration the implementation of the proposed monitoring and mitigation measures, NMFS preliminarily finds that the total marine mammal take from the proposed activity will have a negligible impact on all affected marine mammal species or stocks.

    Small Numbers

    As noted above, only small numbers of incidental take may be authorized under Sections 101(a)(5)(A) and (D) of the MMPA for specified activities other than military readiness activities. The MMPA does not define small numbers and so, in practice, where estimated numbers are available, NMFS compares the number of individuals taken to the most appropriate estimation of abundance of the relevant species or stock in our determination of whether an authorization is limited to small numbers of marine mammals. When the predicted number of individuals to be taken is fewer than one third of the species or stock abundance, the take is considered to be of small numbers. Additionally, other qualitative factors may be considered in the analysis, such as the temporal or spatial scale of the activities.

    The amount of take NMFS authorizes is below one third of the estimated population abundance of all species (Roberts et al., 2016). In fact, take of individuals is less than 4 percent of the abundance of the affected populations (see Table 8).

    Based on the analysis contained herein of the proposed activity (including the proposed mitigation and monitoring measures) and the anticipated take of marine mammals, NMFS preliminarily finds that small numbers of marine mammals will be taken relative to the population size of the affected species or stocks.

    Unmitigable Adverse Impact Analysis and Determination

    There are no relevant subsistence uses of the affected marine mammal stocks or species implicated by this action. Therefore, NMFS has determined that the total taking of affected species or stocks would not have an unmitigable adverse impact on the availability of such species or stocks for taking for subsistence purposes.

    Endangered Species Act (ESA)

    Section 7(a)(2) of the ESA (16 U.S.C. 1531 et seq. ) requires that each Federal agency insure that any action it authorizes, funds, or carries out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of designated critical habitat. To ensure ESA compliance for the issuance of IHAs, NMFS consults internally whenever we propose to authorize take for endangered or threatened species.

    NMFS is proposing to authorize take of sperm whales, which are listed under the ESA. The NMFS Office of Protected Resources' (OPR) Permits and Conservation Division has requested initiation of Section 7 consultation with the OPR Endangered Species Act Interagency Cooperation Division for the issuance of this IHA. NMFS will conclude the ESA consultation prior to reaching a determination regarding the proposed issuance of the authorization.

    Proposed Authorization

    As a result of these preliminary determinations, NMFS proposes to issue an IHA to Scripps for conducting geophysical surveys in the southeast Gulf of Mexico in summer 2022, provided the previously mentioned mitigation, monitoring, and reporting requirements are incorporated. A draft of the proposed IHA can be found at https://www.fisheries.noaa.gov/​permit/​incidental-take-authorizations-under-marine-mammal-protection-act.

    Request for Public Comments

    We request comment on our analyses, the proposed authorization, and any other aspect of this notice of proposed IHA for the proposed geophysical survey. We also request at this time comment on the potential Renewal of this proposed IHA as described in the paragraph below. Please include with your comments any supporting data or literature citations to help inform decisions on the request for this IHA or a subsequent Renewal IHA.

    On a case-by-case basis, NMFS may issue a one-time, one-year renewal IHA following notice to the public providing an additional 15 days for public comments when (1) up to another year of identical or nearly identical, or nearly identical, activities as described in the Description of Proposed Activity section of this notice is planned or (2) the activities as described in the Description of Proposed Activity section of this notice would not be completed by the time the IHA expires and a renewal would allow for completion of the activities beyond that described in the Dates and Duration section of this notice, provided all of the following conditions are met: Start Printed Page 71453

    • A request for renewal is received no later than 60 days prior to the needed renewal IHA effective date (recognizing that the renewal IHA expiration date cannot extend beyond one year from expiration of the initial IHA).
    • The request for renewal must include the following:

    (1) An explanation that the activities to be conducted under the requested renewal IHA are identical to the activities analyzed under the initial IHA, are a subset of the activities, or include changes so minor ( e.g., reduction in pile size) that the changes do not affect the previous analyses, mitigation and monitoring requirements, or take estimates (with the exception of reducing the type or amount of take).

    (2) A preliminary monitoring report showing the results of the required monitoring to date and an explanation showing that the monitoring results do not indicate impacts of a scale or nature not previously analyzed or authorized.

    Upon review of the request for renewal, the status of the affected species or stocks, and any other pertinent information, NMFS determines that there are no more than minor changes in the activities, the mitigation and monitoring measures will remain the same and appropriate, and the findings in the initial IHA remain valid.

    Start Signature

    Dated: December 13, 2021.

    Kimberly Damon-Randall,

    Director, Office of Protected Resources, National Marine Fisheries Service.

    End Signature End Supplemental Information

    [FR Doc. 2021-27272 Filed 12-15-21; 8:45 am]

    BILLING CODE 3510-22-P

Document Information

Published:
12/16/2021
Department:
National Oceanic and Atmospheric Administration
Entry Type:
Notice
Action:
Notice; proposed incidental harassment authorization; request for comments on proposed authorization and possible renewal.
Document Number:
2021-27272
Dates:
Comments and information must be received no later than January 18, 2022.
Pages:
71427-71453 (27 pages)
Docket Numbers:
RTID 0648-XA203
PDF File:
2021-27272.pdf