96-13920. Technical Assistance  

  • [Federal Register Volume 61, Number 108 (Tuesday, June 4, 1996)]
    [Rules and Regulations]
    [Pages 27998-28000]
    From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
    [FR Doc No: 96-13920]
    
    
    
    -----------------------------------------------------------------------
    
    DEPARTMENT OF AGRICULTURE
    Natural Resources Conservation Service
    
    7 CFR Part 610
    
    
    Technical Assistance
    
    AGENCY: Natural Resources Conservation Service, USDA.
    
    ACTION: Final rule.
    
    -----------------------------------------------------------------------
    
    SUMMARY: Section 301(c) of the Federal Agriculture Improvement and 
    Reform Act of 1996 (FAIRA) requires the Secretary of Agriculture to 
    publish in the Federal Register, within 60 days of the enactment of 
    FAIRA, the universal soil loss equation (USLE) and wind erosion 
    equation (WEQ) used by the Department of Agriculture (the Department) 
    as of the date of publication. The Natural Resources Conservation 
    Service (NRCS) utilizes factors from the USLE, the revised universal 
    soil loss equation (RUSLE) and the WEQ in equations to predict soil 
    erosion due to water and wind. The Department was first required to use 
    the factors from the USLE and WEQ to make highly erodible land (HEL) 
    determinations under the Food Security Act (FSA) of 1985, Pub. L. 99-
    198. The FSA defined HEL as land that has the potential for an 
    excessive annual rate of erosion in relation to the soil loss tolerance 
    level as determined by the Secretary through application of factors 
    from the USLE and WEQ.
        This final rule sets forth the USLE and WEQ used by the Department 
    as of this date and the circumstances under the equations are used. 
    Since the first mandated use of the USLE in 1985, the technology used 
    to predict soil erosion due to water has been refined. The refinement 
    is reflected in a revised USLE (RUSLE) which will also be used under 
    the circumstances described in this rule.
    
    EFFECTIVE DATE: This rule is effective June 3, 1996.
    
    FOR FURTHER INFORMATION CONTACT: David L. Schertz, National Agronomist, 
    Natural Resources Conservation Service, P.O. Box 2890, Washington, D.C. 
    20013; Fax 202-720-2646 or Internet:dschertz@usda.gov.
    
    SUPPLEMENTARY INFORMATION:
    
    Rulemaking Analyses
    
        EO 12291: Not major.
        Regulatory Flexibility Act: No significant impact.
        Paperwork Reduction Act: Does not apply.
        National Environmental Policy Act: Not applicable.
        Civil Rights Impact Analysis: Not applicable.
        Federalism Assessment: Does not have sufficient federalism 
    implications to warrant an assessment.
        Unfunded Mandate: Not applicable.
    
    Background And Purpose
    
        The Natural Resources Conservation Service (NRCS) of the United 
    States Department of Agriculture (the Department), utilizes the 
    universal soil loss equation (USLE), the revised universal soil loss 
    equation (RUSLE) and the wind erosion equation (WEQ) to predict soil 
    erosion due to water and wind. Section 301(c) of the Federal 
    Agriculture Improvement and Reform Act of 1996 (FAIRA), which was 
    enacted April 4, 1996, requires the Secretary of Agriculture to publish 
    in the Federal Register by June 3, 1996, the USLE and WEQ used by the 
    Department as of the date of publication. NRCS is publishing the 
    equations and the rules under which the USLE, RUSLE, and WEQ factors 
    are used for administering programs.
        The equation for predicting soil loss due to erosion for both the 
    USLE and RUSLE is A=R x K x LS x C x P. The factors in the equation 
    have the following definitions:
        1. A is the estimation of average annual soil loss in tons per acre 
    caused by sheet and rill erosion.
        2. R is the rainfall erosivity factor.
        3. K is the soil erodibility factor.
        4. LS is the slope length and steepness factor.
        5. C is the cover and management factor.
        6. P is the support practice factor.
        A paper published by K.G. Renard, et al., in the May-June, 1994 
    Journal of Soil and Water Conservation, volume 49(3), pages 213-220, 
    entitled, ``RUSLE revisited: Status, questions, answers, and the 
    future'', describes the revision. Primary differences between the USLE 
    and RUSLE include the following:
        R Factor: RUSLE includes more R values for the Western United 
    States than the USLE. For the eastern United States, R values are 
    generally the same as those used in the USLE but includes some 
    revisions.
        K Factor: Values used in RUSLE are similar to the USLE values but 
    are adjusted to account for changes, such as freezing and thawing, and 
    soil moisture. These adjustments are calculated at one-half month 
    intervals for use in RUSLE and are applicable in the northern and 
    southern plains, midwest, southern, and eastern United States.
        LS Factor: USLE uses one LS table; RUSLE uses four LS tables, as 
    determined by the relationship of rill to interrill erosion. Although 
    both the USLE and RUSLE can account for the effects of complex slopes, 
    RUSLE simplifies this LS determination through the use of computer 
    technology.
        C Factor: USLE provides estimates of soil changes for 4-5 crop 
    stage periods throughout the year. RUSLE provides estimates of cover 
    and soil changes on one-half month intervals, especially in relation to 
    canopy, surface residue, residue just under the surface, and the 
    effects of climate on residue decomposition, roughness, roots, and soil 
    consolidation.
        P Factor: USLE uses P factors for contouring, contour 
    stripcropping, and terracing from table values established for field 
    slope ranges; and for terraces, the P factor is also based on channel 
    gradients. RUSLE uses P factors for farming across the slope and 
    includes new process-based routines to determine the effect of 
    stripcropping and buffer strips. Values for farming across the slope 
    are based on slope length and steepness, row grade, ridge height, storm 
    severity, soil infiltration, and the cover and roughness conditions. 
    The stripcropping P factor is based on the amount and location of soil 
    deposition.
        The equation for predicting soil loss due to wind erosion is 
    E=f(IKCLV). The factors in the equation have the following definitions:
        1. E is the estimation of average annual soil loss in tons per 
    acre.
        2. f indicates the equation includes functional relationships that 
    are not straight-line mathematical calculations.
        3. I is the soil erodibility index.
        4. K is the ridge roughness factor.
        5. C is the climatic factor. All climatic factor values are 
    expressed as a percentage of the value established at Garden City, 
    Kansas. Garden City, Kansas was the location of early research in the 
    WEQ and established the standard for climatic factors against which the 
    other locations are measured.
        6. L is the unsheltered distance across an erodible field, measured 
    along the prevailing wind erosion direction.
        7. V is the vegetative cover factor.
        The Department was first statutorily required to use the factors 
    from the USLE and WEQ to make highly erodible land (HEL) determinations 
    under the Food Security Act (FSA) of 1985, Pub. L. 99-198. The 
    Department published the equations used to determine HEL during 
    promulgation of the regulations
    
    [[Page 27999]]
    
    implementing the HEL and wetland conservation provisions of the FSA, 7 
    CFR Part 12 (see Federal Register, Vol. 52, No. 180, page 35194, 
    September 17, 1987). Section 12.21 provides that land in a soil map 
    unit will be considered to be highly erodible if the quotient of either 
    the RKLS/T or the CI/T equals or exceeds 8. The factors, R, K, and LS 
    are from the USLE. The USLE factors are explained in the U.S. 
    Department of Agriculture Handbook 537. The factors C and I are from 
    the WEQ. The WEQ factors are explained in a paper by N.P. Woodruff and 
    F.H. Siddaway, 1965. The soil loss tolerance (T) value represents the 
    average annual rate of soil erosion that could occur without causing a 
    decline in long term productivity. The specific factors values which 
    are used for determining whether soil map units are considered to be 
    highly erodible are published in the local Field Office Technical Guide 
    (FOTG) which is maintained in each NRCS field office. The values 
    published as of January 1, 1990, in the FOTG are the basis for all HEL 
    determinations. The FOTG is available for review in each NRCS field 
    office. The values vary across the country to correspond to differences 
    in climate, soil types, and topography.
        Since the publication of the USLE in 1985, additional research on 
    erosion processes has resulted in refined technology for determining 
    the factor values in the USLE. RUSLE represents a revision of the USLE 
    technology in how the factor values in the equation are determined. 
    RUSLE is explained in the U.S. Department of Agriculture Handbook 703, 
    ``Predicting Soil Erosion by Water: A Guide to Conservation Planning 
    with the Revised Universal Soil Loss Equation (RUSLE).''
        Since the passage of the FSA in 1985, USLE and WEQ have been used 
    to compile the highly erodible soils list and to make highly erodible 
    field determinations. USLE has been used to develop conservation plans 
    and revisions and to conduct status reviews. As new understanding is 
    gained through research on erosion processes, updates of erosion 
    prediction equations can occur. Changing the highly erodible soils list 
    and field determinations each time these technologies are updated would 
    be disruptive to farmers and impractical for long range planning. 
    Therefore, no changes to the existing highly erodible soils list or 
    field determinations will be made as a result of the implementation of 
    RUSLE. However, as technology is improved, such as with RUSLE, NRCS 
    will use it to develop new conservation plans, plan revisions, and to 
    conduct status reviews. NRCS will not require producers to meet more 
    restrictive levels of erosion reduction that might result from using 
    RUSLE instead of USLE while carrying out existing conservation plans. 
    Therefore, all existing conservation plans developed using USLE, that 
    have been implemented, will remain acceptable plans for purposes of the 
    HEL conservation provisions of the FSA.
    
    List of Subjects in 7 CFR Part 610
    
        Soil conservation, Technical assistance, Water resources.
    
        For the reasons set forth above, 7 CFR Part 610 is amended as 
    follows:
    
    PART 610--TECHNICAL ASSISTANCE
    
        1. The authority for Part 610 is revised to read as follows:
    
        Authority: 16 U.S.C. 590a-590f, 590q, 3801(a)(9).
    
    
    Secs. 610.1-610.5.  [Designated as Subpart A]
    
        2. Sections 610.1 through 610.5 are designated as subpart A--
    Conservation Operations.
        3. Section 610.1 is revised to read as follows:
    
    
    Sec. 610.1  Purpose.
    
        This subpart sets forth Natural Resource Conservation Service 
    (NRCS) policies and procedures for furnishing technical assistance in 
    conservation operations.
        4. Subpart B--Soil Erosion Prediction Equations containing 
    Secs. 610.11 through 610.14 is added to read as follows:
    
    Subpart B--Soil Erosion Prediction Equations
    
    Sec.
    610.11  Purpose and scope.
    610.12  Equations for predicting soil loss due to water erosion.
    610.13  Equations for predicting soil loss due to wind erosion.
    610.14  Use of USLE, RUSLE, and WEQ.
    
    Subpart B--Soil Erosion Prediction Equations
    
    
    Sec. 610.11  Purpose and scope.
    
        This subpart sets forth the equations and rules for utilizing the 
    equations that are used by the Natural Resources Conservation Service 
    (NRCS) to predict soil erosion due to water and wind. Section 301 of 
    the Federal Agriculture Improvement and Reform Act of 1996 (FAIRA) and 
    the Food Security Act, as amended, 16 U.S.C. 3801-3813 specified that 
    the Secretary would publish the universal soil loss equation (USLE) and 
    wind erosion equation (WEQ) used by the Department within 60 days of 
    the enactment of FAIRA. This subpart sets forth the equations, 
    definition of factors, and provides the rules under which NRCS will 
    utilize the USLE, the revised universal soil loss equation (RUSLE), and 
    the WEQ.
    
    
    Sec. 610.12  Equations for predicting soil loss due to water erosion.
    
        (a) The equation for predicting soil loss due to erosion for both 
    the USLE and the RUSLE is A=R x K x LS x C x P. (For further 
    information about USLE see the U.S. Department of Agriculture Handbook 
    537, ``Predicting Rainfall Erosion Losses--A Guide to Conservation 
    Planning,'' dated 1978. Copies of this document are available from the 
    Natural Resources Conservation Service, P.O. Box 2890, Washington, DC 
    20013. For further information about RUSLE see the U.S. Department of 
    Agriculture Handbook 703, ``Predicting Soil Erosion by Water: A Guide 
    to Conservation Planning with the Revised Universal Soil Loss Equation 
    (RUSLE).'' Copies may be purchased from the National Technical 
    Information Service, 5285 Port Royal Road, Springfield, VA 22161.)
        (b) The factors in the USLE equation are:
        (1) A is the estimation of average annual soil loss in tons per 
    acre caused by sheet and rill erosion.
        (2) R is the rainfall erosivity factor. Accounts for the energy and 
    intensity of rainstorms.
        (3) K is the soil erodibility factor. Measures the susceptibility 
    of a soil to erode under a standard condition.
        (4) LS is the slope length and steepness factor. Accounts for the 
    effect of length and steepness of slope on erosion.
        (5) C is the cover and management factor. Estimates the soil loss 
    ratio for each of 4 or 5 crop stage periods throughout the year, 
    accounting for the combined effect of all the interrelated cover and 
    management variables.
        (6) P is the support practice factor. Accounts for the effect of 
    conservation support practices, such as contouring, contour 
    stripcropping, and terraces on soil erosion.
        (c) The factors in the RUSLE equation are defined as follows:
        (1) A is the estimation of average annual soil loss in tons per 
    acre caused by sheet and rill erosion.
        (2) R is the rainfall erosivity factor. Accounts for the energy and 
    intensity of rainstorms.
        (3) K is the soil erodibility factor. Measures the susceptibility 
    of a soil to erode under a standard condition and adjusts it bi-monthly 
    for the effects of freezing and thawing, and soil moisture.
        (4) LS is the slope length and steepness factor. Accounts for the 
    effect of length and steepness of slope on
    
    [[Page 28000]]
    
    erosion based on 4 tables reflecting the relationship of rill to 
    interrill erosion.
        (5) C is the cover and management factor. Estimates the soil loss 
    ratio at one-half month intervals throughout the year, accounting for 
    the individual effects of prior land use, crop canopy, surface cover, 
    surface roughness, and soil moisture.
        (6) P is the support practice factor. Accounts for the effect of 
    conservation support practices, such as cross-slope farming, 
    stripcropping, buffer strips, and terraces on soil erosion.
    
    
    Sec. 610.13  Equations For Predicting Soil Loss Due To Wind Erosion.
    
        (a) The equation for predicting soil loss due to wind in the Wind 
    Erosion Equation (WEQ) is E=f(IKCLV). (For further information on WEQ 
    see the paper by N.P. Woodruff and F.H. Siddaway, 1965. ``A Wind 
    Erosion Equation,'' Soil Science Society of America Proceedings, Vol. 
    29, No. 5, pages 602-608, which is available from the American Society 
    of Agronomy, Madison, Wisconsin. In addition, the use of the WEQ in 
    NRCS is explained in the Natural Resources Conservation Service (NRCS) 
    National Agronomy Manual, 190-V-NAM, second ed., Part 502, March, 1988, 
    which is available from the NRCS, P.O. Box 2890, Washington, DC 20013.)
        (c) The factors in the WEQ equation are defined as follows:
        (1) E is the estimation of the average annual soil loss in tons per 
    acre.
        (2) f indicates the equation includes functional relationships that 
    are not straight-line mathematical calculations.
        (3) I is the soil erodibility index. It is the potential for soil 
    loss from a wide, level, unsheltered, isolated field with a bare, 
    smooth, loose and uncrusted surface. Soil erodibility is based on soil 
    surface texture, calcium carbonate content, and percent day.
        (4) K is the ridge roughness factor. It is a measure of the effect 
    of ridges formed by tillage and planting implements on wind erosion. 
    The ridge roughness is based on ridge spacing, height, and erosive wind 
    directions in relation to the ridge direction
        (5) C is the climatic factor. It is a measure of the erosive 
    potential of the wind speed and surface moisture at a given location 
    compared with the same factors at Garden City, Kansas. The annual 
    climatic factor at Garden City is arbitrarily set at 100. All climatic 
    factor values are expressed as a percentage of that at Garden City.
        (6) L is the unsheltered distance. It is the unsheltered distance 
    across an erodible field, measured along the prevailing wind erosion 
    direction. This distance is measured beginning at a stable border on 
    the upwind side and continuing downward to the nonerodible or stable 
    area, or to the downwind edge of the area being evaluated.
        (7) V is the vegetative cover factor. It accounts for the kind, 
    amount, and orientation of growing plants or plant residue on the soil 
    surface.
    
    
    Sec. 610.14  Use of USLE, RUSLE, and WEQ.
    
        (a) All Highly Erodible Land (HEL) determinations are based on the 
    formulas set forth in 7 CFR Sec. 12.21 using some of the factors from 
    the USLE and WEQ and the factor values that were contained in the local 
    Field Office Technical Guide (FOTG) as of January 1, 1990. In addition, 
    this includes the soil loss tolerance values used in those formulas for 
    determining HEL. The soil loss tolerance value is used as one of the 
    criteria for planning soil conservation systems. These values are 
    available in the FOTG in the local field office of the Natural 
    Resources Conservation Service.
        (b) RUSLE will be used to:
        (1)(i) Evaluate the soil loss estimates of conservation systems 
    contained in the FOTG.
        (ii) Evaluate the soil loss estimates of systems actually applied, 
    where those systems were applied differently than specified in the 
    conservation plan adopted by the producer or where a conservation plan 
    was not developed, in determining whether a producer has complied with 
    the HEL conservation provisions of the Food Security Act of 1985, as 
    amended, 16 U.S.C. Sec. 3801 et seq., set forth in 7 CFR Part 12; and
        (2) Develop new or revised conservation plans.
    
        Dated: May 30, 1996.
    Paul W. Johnson,
    Chief, Natural Resources Conservation Service.
    [FR Doc. 96-13920 Filed 5-31-96; 11:33 am]
    BILLING CODE 3410-16-M
    
    

Document Information

Effective Date:
6/3/1996
Published:
06/04/1996
Department:
Natural Resources Conservation Service
Entry Type:
Rule
Action:
Final rule.
Document Number:
96-13920
Dates:
This rule is effective June 3, 1996.
Pages:
27998-28000 (3 pages)
PDF File:
96-13920.pdf
CFR: (5)
7 CFR 610.1
7 CFR 610.11
7 CFR 610.12
7 CFR 610.13
7 CFR 610.14