99-30131. Airworthiness Directives; Sabreliner Model NA-265-40, NA-265-60, NA-70, and, NA-265-80 Series Airplanes  

  • [Federal Register Volume 64, Number 224 (Monday, November 22, 1999)]
    [Rules and Regulations]
    [Pages 63561-63568]
    From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
    [FR Doc No: 99-30131]
    
    
    
    ========================================================================
    Rules and Regulations
                                                    Federal Register
    ________________________________________________________________________
    
    This section of the FEDERAL REGISTER contains regulatory documents 
    having general applicability and legal effect, most of which are keyed 
    to and codified in the Code of Federal Regulations, which is published 
    under 50 titles pursuant to 44 U.S.C. 1510.
    
    The Code of Federal Regulations is sold by the Superintendent of Documents. 
    Prices of new books are listed in the first FEDERAL REGISTER issue of each 
    week.
    
    ========================================================================
    
    
    Federal Register / Vol. 64, No. 224 / Monday, November 22, 1999 / 
    Rules and Regulations
    
    [[Page 63561]]
    
    
    =======================================================================
    -----------------------------------------------------------------------
    
    DEPARTMENT OF TRANSPORTATION
    
    Federal Aviation Administration
    
    14 CFR Part 39
    
    [Docket No. 99-NM-137-AD; Amendment 39-11292; AD 99-19-03]
    RIN 2120-AA64
    
    
    Airworthiness Directives; Sabreliner Model NA-265-40, NA-265-60, 
    NA-70, and, NA-265-80 Series Airplanes
    
    AGENCY: Federal Aviation Administration, DOT.
    
    ACTION: Final rule.
    
    -----------------------------------------------------------------------
    
    SUMMARY: This amendment adopts a new airworthiness directive (AD), 
    applicable to certain Sabreliner Model NA-265-40, NA-265-60, NA-70, and 
    NA-265-80 series airplanes, that requires revising the Airplane Flight 
    Manual (AFM) to include requirements for activation of the airframe 
    pneumatic deicing boots. This amendment is prompted by reports of 
    inflight incidents and an accident that occurred in icing conditions 
    where the airframe pneumatic deicing boots were not activated. The 
    actions specified by this AD are intended to ensure that flightcrews 
    activate the pneumatic wing and tail deicing boots at the first signs 
    of ice accumulation. This action will prevent reduced controllability 
    of the aircraft due to adverse aerodynamic effects of ice adhering to 
    the airplane prior to the first deicing cycle.
    
    EFFECTIVE DATE: December 27, 1999.
    
    ADDRESSES: Information pertaining to this rulemaking action may be 
    examined at the Federal Aviation Administration (FAA), Transport 
    Airplane Directorate, Rules Docket, 1601 Lind Avenue, SW., Renton, 
    Washington; or at the FAA, Small Airplane Directorate, Wichita Aircraft 
    Certification Office, 1801 Airport Road, Room 100, Mid-Continent 
    Airport, Wichita, Kansas.
    
    FOR FURTHER INFORMATION CONTACT: Tina Miller, Aerospace Engineer, 
    Flight Test Branch, ACE-117W, FAA, Small Airplane Directorate, Wichita 
    Aircraft Certification Office, 1801 Airport Road, Room 100, Mid-
    Continent Airport, Wichita, Kansas 67209; telephone (316) 946-4168; fax 
    (316) 946-4407.
    
    SUPPLEMENTARY INFORMATION: A proposal to amend part 39 of the Federal 
    Aviation Regulations (14 CFR part 39) to include an airworthiness 
    directive (AD) that is applicable to certain Sabreliner Model NA-265-
    40, NA-265-60, NA-70, and, NA-265-80 series airplanes was published in 
    the Federal Register on July 16, 1999 (64 FR 38358). That action 
    proposed to require revising the Airplane Flight Manual (AFM) to 
    include requirements for activation of the airframe pneumatic deicing 
    boots.
    
    Related Proposals
    
        In addition to the proposed rule described previously, in June 
    1999, the FAA issued 18 other similar proposals that address the 
    subject unsafe condition on various airplane models (see below for a 
    listing of all 19 proposed rules). Those 18 proposals also were 
    published in the Federal Register on July 16, 1999. (Docket 99-NM-153-
    AD, for Fokker Model F-27 Mark 100, 200, 300, 400, 500, 600, and 700 
    series airplanes, was also issued as a supplemental notice of proposed 
    rulemaking, and published in the Federal Register on August 6, 1999.) 
    This final rule contains the FAA's responses to all relevant public 
    comments received for each of these proposed rules.
    
    ----------------------------------------------------------------------------------------------------------------
          Manufacturer airplane model                           Number                     Federal Register citation
    ----------------------------------------------------------------------------------------------------------------
    Cessna Aircraft Company Models 500,      99-NM-136-AD                                 64 FR 38374
     550, and 560 Series Airplanes.
    Sabreliner Corporation Models 40, 60,    99-NM-137-AD                                 64 FR 38358
     70, and 80 Series Airplanes.
    Gulfstream Aerospace Model G-159 Series  99-NM-138-AD                                 64 FR 38341
     Airplanes.
    McDonnell Douglas Models DC-3 and DC-4   99-NM-139-AD                                 64 FR 38325
     Series Airplanes.
    Mitsubishi Heavy Industries Model YS-11  99-NM-140-AD                                 64 FR 38371
     and YS-11A Series Airplanes.
    Gulfstream American (Frakes Aviation)    99-NM-141-AD                                 64 FR 38355
     Model G-73 (Mallard) and G-73T Series
     Airplanes.
    Lockheed, Models L-14 and L-18 Series    99-NM-142-AD                                 64 FR 38338
     Airplanes.
    Fairchild Models F-27 and FH-227 Series  99-NM-143-AD                                 64 FR 38322
     Airplanes.
    Aerospatiale Models ATR-42/ATR-72        99-NM-144-AD                                 64 FR 38368
     Series.
    Jetstream Model BAe ATP Airplanes......  99-NM-145-AD                                 64 FR 38351
    Jetstream Model 4101 Airplanes.........  99-NM-146-AD                                 64 FR 38335
    British Aerospace Model HS 748 Series    99-NM-147-AD                                 64 FR 38319
     Airplanes.
    Saab Model SF340A/SAAB 340B/SAAB 2000    99-NM-148-AD                                 64 FR 38365
     Series Airplanes.
    CASA Model C-212/CN-235 Series           99-NM-149-AD                                 64 FR 38348
     Airplanes.
    Dornier Model 328-100 Series Airplanes.  99-NM-150-AD                                 64 FR 38332
    Lockheed Model 1329-23 and 1329-25       99-NM-151-AD                                 64 FR 38316
     (Lockheed Jetstar) Series Airplanes.
    de Havilland Model DHC-7/DHC-8 Series    99-NM-152-AD                                 64 FR 38362
     Airplanes.
    Fokker Model F-27 Mark 100/200/300/400/  99-NM-153-AD                                 64 FR 42870
     500/600/700/050 Series Airplanes.
    Short Brothers Model SD3-30/SD3-60/SD3-  99-NM-154-AD                                 64 FR 38329
     SHERPA Airplanes.
    ----------------------------------------------------------------------------------------------------------------
    
    Comments
    
        Interested persons have been afforded an opportunity to participate 
    in the making of this amendment. Due consideration has been given to 
    the following comments received.
    
    1. Support for the Rule
    
        One commenter supports the proposed rule.
    
    [[Page 63562]]
    
    2. Request To Withdraw the Proposal: No Unsafe Condition
    
        Several commenters request that the proposal be withdrawn because 
    no unsafe condition exists on certain airplanes. One of these 
    commenters states that the FAA is merely speculating that the proposed 
    Airplane Flight Manual (AFM) revision will improve safety. Further, the 
    commenter contends that the FAA cannot substantiate that the proposed 
    AFM revision will prevent ice bridging. This same commenter also asks 
    if the FAA met its own standards by testing the proposed procedure on 
    each of the affected airplanes.
        The FAA does not concur that no unsafe condition exists. As 
    discussed in the preamble of the proposed rule, the FAA has reviewed 
    the icing-related incident history of certain airplanes, and has 
    determined that icing incidents may have occurred because pneumatic 
    deicing boots were not activated at the first evidence of ice 
    accretion. As a result, the handling qualities or the controllability 
    of the airplane may have been reduced due to the accumulated ice. The 
    FAA also discussed an accident that occurred as a result of the failure 
    of the flightcrew to activate the wing and tail pneumatic deicing 
    boots.
        Although there may have been no reported cases of incidents or 
    accidents on a specific airplane model, the potential still exists for 
    reduced controllability of all airplanes equipped with pneumatic 
    deicing boots due to adverse aerodynamic effects of ice adhering to the 
    airplane. This AD addresses this unsafe condition.
        Further, ice bridging of deicing boots was considered during 
    development of the proposed rule. A broad representation of the 
    aviation community was consulted, including airframe manufacturers, air 
    carriers, airline pilot associations, airplane owner associations, 
    deicing boot manufacturers, and National Aeronautics and Space 
    Administration (NASA). Also, articles readily accessible by the general 
    piloting community solicited operational information concerning ice 
    bridging of deicing boots. The FAA considers that the general consensus 
    of the aviation community is that little or no evidence exists of ice 
    bridging of deicing boots with current deicing boot designs, and ice 
    that is not shed after the initial boot cycle continues to increase in 
    thickness and sheds during subsequent cycles.
        In addition, many airplanes equipped with pneumatic deicing boots 
    to protect the engine are operated when icing conditions are present, 
    i.e., visible moisture and a specific temperature are observed. As 
    discussed in Comment #3 (following this response), at least two 
    airplane manufacturers have issued AFM's that contain procedures to 
    activate the deicing boots at the first sign of ice accumulation. The 
    FAA is unaware of any ice bridging problems associated with early 
    operations of either the airfoil or engine pneumatic deicing boots.
        In response to the commenter's question regarding the FAA meeting 
    its own standards, the FAA infers that the commenter is requesting the 
    basis for the FAA's determination that the proposed procedures are 
    safe. Most aircraft certification programs have not considered the 
    reduced controllability of the aircraft due to adverse aerodynamic 
    effects of ice adhering to the pneumatic boots. The requirements of 
    this AD (activation of the deicing boot system at the first sign of ice 
    formation anywhere on the aircraft, or upon annunciation from an ice 
    detector system, whichever occurs first, along with the periodic 
    cycling of the boots) will minimize the ice accretions and thereby 
    reduce the adverse aerodynamic effects.
    
    3. Request To Withdraw the Proposal: Possible Adverse Effects of 
    Residual Ice
    
        Several commenters state that deicing boots do the best job of 
    shedding ice on a single cycle, if ice is permitted to accrete to \1/4\ 
    or \1/2\ inch before activation of the boots. One of these commenters 
    further contends that the effect of continuous cycling in auto mode may 
    not produce a clean shed of ice on each activation, and that residual 
    ice must be taken into consideration before any revision to the AFM is 
    required. Another commenter states that, although operation in the 
    continuous mode upon first indication of ice accretion would eliminate 
    the problem of identification of accretion, the commenter is concerned 
    that there would then be a potential for degraded performance due to 
    residual ice.
        The FAA does not concur that the proposal should be withdrawn 
    because of concerns over residual ice. Operation of pneumatic deicing 
    boots typically results in persistent ice accretions on the boot 
    surfaces, even when \1/4\ to \1/2\ inch of ice is allowed to accrete 
    prior to activation of the boots. The persistent residual and inter-
    cycle ice accretions typically result in adverse aerodynamic effects 
    and degraded airplane flying qualities. Activation of the wing and tail 
    pneumatic deicing boots at the first sign of ice accretion, or at the 
    annunciation of an ice detector system and periodic operation of the 
    deicing boots will also result in persistent ice accretions. However, 
    the proposed procedure will minimize the residual and intercycle ice 
    accretions because the ice will be shed when the minimum thickness or 
    mass required for shedding is reached. The residual and intercycle ice 
    accretion thickness resulting from this procedure is less than the ice 
    accretion thickness typically recommended prior to operation of the 
    pneumatic deicing boot. Adverse airplane flying qualities resulting 
    from ice accretions typically are affected by the thickness, shape, 
    texture, and location of the ice accretion.
        At least two airplane manufacturers have issued AFM's that contain 
    procedures to activate the deicing boots at the first sign of ice 
    accumulation. Those two airplane models have different wing and 
    stabilizer design characteristics and different deicing boot 
    configurations. Further, those two airplane models represent a large 
    proportion of the airplane fleet equipped with pneumatic deicing boots. 
    The FAA has received no reports indicating any adverse effects of 
    residual ice resulting from early activation of the deicing boots for 
    these airplane designs.
        In addition, a number of airplane models are equipped with deicing 
    boot systems that include automatic operating modes, wherein the boots 
    automatically cycle at specific time intervals after being activated. 
    This automatic cycling has surely resulted in operation of the boots 
    with less than the recommended thickness of ice accreted. The FAA has 
    received no reports indicating any adverse effects resulting from the 
    use of the automatic mode.
    
    4. Request To Withdraw or Delay: Develop More Data
    
        Several commenters request that the FAA delay issuance of the rule 
    until more data are developed and reviewed. Certain of these commenters 
    also state that at the public meeting on icing (February 2-4, 1999), 
    the consensus was that a uniform procedure cannot be adopted for all 
    airplanes. That is, a ``blanket'' proposal for numerous airplanes 
    (regardless of design) is inappropriate without specific consideration 
    for the individual designs. Another one of these commenters points out 
    that each airplane model is unique and that the operating instructions 
    for the ice protection system for one airplane model may not be 
    appropriate for another airplane model. That commenter further adds 
    that the airframe manufacturer is in the best position to determine 
    appropriate limitations.
    
    [[Page 63563]]
    
        Another one of the commenters requests that, if the proposal is not 
    withdrawn, the issuance of any rulemaking be delayed since certain 
    language of the requirements of the AD is confusing.
        The FAA does not concur that a delay in issuing this action is 
    appropriate. The FAA concurs that the airframe manufacturers present at 
    the February public meeting did not support a common procedure for the 
    operation of deicing boots. However, as mentioned previously, there 
    have been no adverse reports on the airplane fleet equipped with 
    pneumatic deicing boots that operate the boots at the first sign of ice 
    accretion. With the exception of ``older'' pneumatic boots (reference 
    comment #7, below), the FAA finds that a common procedure for boot 
    operation is appropriate. The FAA has determined that the common 
    procedures for operation of deicing boots as required by this AD 
    (activation of the deicing boot system at the first sign of ice 
    formation anywhere on the aircraft, or upon annunciation of an ice 
    detector system, whichever occurs first, and periodic cycling of the 
    boots) will minimize the ice accretions and thereby reduce the adverse 
    aerodynamic effects.
        To withdraw or delay this AD would be inappropriate since the FAA 
    has determined that an unsafe condition exists, and that the required 
    AFM revision must be accomplished to ensure continued safety of the 
    fleet. The fact that other data may be developed at a later time does 
    not negate the FAA's responsibility to address the existing identified 
    unsafe condition in a timely manner. No change is necessary to the 
    final rule in this regard.
        The FAA is unable to respond to one commenter's statement that 
    certain language of the proposal was confusing since no example was 
    specified.
    
    5. Request To Withdraw Proposals for Certain Airplanes
    
        Three commenters, all airframe manufacturers, request that the 
    proposal be withdrawn for several airplane models [British Aerospace 
    Model ATP airplanes, British Aerospace Model HS 748 airplanes, Dornier 
    Model 328-100 series airplanes, and deHavilland Model DHC-7/DHC-8 
    series airplanes] since they have been certified to be in compliance 
    with part 25 of the Federal Aviation Regulations (14 CFR 25.1419). 
    Additionally, the commenters point out that those airplanes have been 
    certificated in accordance with the appropriate foreign civil 
    airworthiness authorities. The commenters further explain that service 
    experience of those airplanes does not indicate any deficiencies with 
    regard to handling and performance due to airframe accreted ice. In 
    conclusion, the commenters state that, in the absence of any evidence 
    to suggest deficiencies regarding this subject, they cannot support the 
    intent of the rule.
        The FAA acknowledges that an airplane model may have design 
    characteristics that mitigate the adverse airplane flying qualities 
    resulting from ice accretion on deicing boot surfaces. As discussed in 
    the proposal for this AD, the FAA has previously requested that 
    interested persons provide information on icing system design and 
    operations procedures concerning flight during icing conditions. The 
    request also asked manufacturers, who are in the best position to 
    determine those operating procedures, to provide data showing that 
    their aircraft have safe operating characteristics with ice accreted on 
    the protected surfaces (boots). That information was requested 
    specifically by letter on October 1, 1998, to certain manufacturers of 
    airplanes certified in accordance with part 25 of the Federal Aviation 
    Regulations (14 CFR part 25). Except as discussed in Item 6 of the 
    comment section of this final rule, no other information received 
    caused the FAA to reconsider that an unsafe condition may exist, or 
    that a revision of the AFM, such as required by this AD, was unsafe for 
    those airplanes.
        Additionally, similar information was specifically requested in the 
    discussion section of the proposed rule. Of the comments to the 
    proposal that were received by the FAA, no additional data was included 
    for Dornier Model 328-100 series airplanes, or de Havilland Model DHC-
    7/DHC-8 series airplanes that caused the FAA to reconsider the previous 
    conclusion that an unsafe condition exists. Further, no data was 
    provided to indicate that the proposal to require activation of wing 
    and tail pneumatic deicing boots at the first sign of ice accretion or 
    annunciation of an ice detector system was unsafe for any particular 
    airplane model.
        United Kingdom Accident Investigation Board Preliminary Report EWC 
    91/18 indicated that, while on climb to 16,000 feet in the vicinity of 
    Oxford, England, on August 11, 1991, a British Aerospace Model ATP 
    airplane suffered a significant degradation of flying qualities and 
    propeller icing. According to that report, the deicing boots of the 
    airplane were not activated, and the airplane stalled, experienced 
    severe uncontrolled roll oscillations, severe vibration that rendered 
    the electronic flight instruments partially unreadable, and developed a 
    high rate of descent. The deicing boots were finally activated and 
    control of the airplane was regained after a loss of 3,500 feet in 
    altitude. The report identified causal factors of the incident which 
    included rapid accumulation of glaze ice that was not evident to the 
    flightcrew, difficulty of the flightcrew to visually gauge the ice 
    accretion thickness on the wing's leading edge, and propeller 
    vibrations that disguised the onset of wing stall. Even though this 
    incident occurred outside of the United States, and although this 
    airplane model demonstrated acceptable in-flight icing airworthiness 
    relative to FAA and Joint Airworthiness Authorities (JAA) requirements, 
    the incident illustrates the vulnerability of this airplane model to 
    the safety condition addressed by this AD.
        One commenter, British Aerospace, has requested until October 20, 
    1999, to provide additional data to substantiate that the Model ATP 
    airplanes and Model HS 748 airplanes can safely operate with ice 
    accumulations on the protected surfaces. As discussed previously and in 
    the NPRM, the FAA considers that this same vulnerability exists on all 
    airplanes equipped with pneumatic deicing boots.
        In the interest of safety, the FAA finds that it is not prudent to 
    delay issuance of the final rules on those airplane models. However, 
    British Aerospace and any other manufacturer is encouraged to request 
    approval of an alternative method of compliance with the airworthiness 
    directive based on substantiating data indicating that a particular 
    aircraft can safely be operated with the ice that would accumulate on 
    the protected surfaces prior to activation of the ice protection 
    system.
    
    6. Request To Withdraw the Proposal for Certain Other Airplanes
    
        Two manufacturers request that the proposals regarding Cessna Model 
    500, 501, 550, 551, and 560 series airplanes, and British Aerospace 
    (Jetstream) Model 4101 airplanes be withdrawn. The manufacturers advise 
    that the testing summarized in their comments provides evidence that 
    the current procedures provide a safe method to operate those airplane 
    models. The manufacturers conclude that, based on the service history 
    and data provided to the FAA, the proposed AFM revision for those 
    models is unnecessary.
        The FAA concurs that the notice of proposed rulemaking for Cessna 
    Model 500, 501, 550, 551, and 560 series airplanes should be withdrawn 
    based on the following information. The manufacturer performed a 
    complete evaluation of the stall and handling
    
    [[Page 63564]]
    
    characteristics with simulated ice shapes on the Model 550 (Bravo) 
    series airplanes. Stall speeds and warning margins were evaluated with 
    a \1/2\-inch glaze ice shape and with an ice shape associated with the 
    system failure. This \1/2\-inch ice shape simulated the ice shape prior 
    to deicing boot activation. Maneuver margin testing consisted of left 
    and right 40-degree bank turns. Stall characteristics were evaluated 
    with a \1/2\-inch rime ice shape configuration. Stall characteristic 
    testing consisted of wings level and 30-degree bank turns. At the 
    conclusion of the testing it was determined that the airplane had an 
    acceptable stall warning margin with ice shapes present. The 
    manufacturer maintains that Model 500/501, Model 550/551, and Model 550 
    (Bravo) series airplanes all use a common wing airfoil with some minor 
    differences in span and wing loading. These aircraft also use a common 
    tail configuration (airfoil, span, and leading edge sweep).
        Additionally, the FAA reviewed the Type Inspection Report (TIR) for 
    Model 550 (Bravo) series airplane testing and found that ice shapes 
    were placed on both the protected and unprotected surfaces.
        The Model 560 (Ultra) series airplanes underwent an extensive ice 
    shape stall investigation. This investigation consisted of stall 
    testing of the baseline airplane and the airplane with the most adverse 
    simulated intercycle ice shapes. The ice shapes consisted of \1/2\-inch 
    shapes on the surfaces protected by boots and 3-inch shapes on 
    unprotected flight surfaces. The stall speeds determined by this 
    testing were incorporated into the Safeflight Angle of Attack computer 
    to increase the stall warning margin during flight in icing conditions. 
    The Model 560 series airplanes angle of attack computer was also 
    updated to incorporate a normal mode and an ice mode stall warning 
    system. The changes to the angle of attack computer on Model 560 and 
    560 (Ultra) series airplanes were proposed by Rules Docket No. 98-NM-
    312-AD.
        The FAA notes that extensive testing of Model 550 and 560 series 
    airplanes (in which acceptable stall protection and maneuver margins at 
    operational speeds were demonstrated with expected ice accretion on the 
    deicing boot surfaces) indicates that these airplanes can safely 
    operate with ice accretions associated with the AFM normal operations 
    procedures of the deicing boots. These attributes demonstrate that 
    Model 550 and 560 series airplanes satisfactorily address the unsafe 
    condition addressed by this AD. Since Model 500 series airplanes are 
    similar to Model 550 series airplanes, the Model 500 series airplanes 
    also satisfactorily addresss the unsafe condition addressed by this AD. 
    The FAA also notes that testing of Model 560 series airplanes revealed 
    problems in the stall warning margin for flight in icing conditions 
    that were addressed by previously issued airworthiness directives.
        The FAA also concurs that the notice of proposed rulemaking for 
    British Aerospace Jetstream Model 4101 airplanes should be withdrawn 
    based on the following information. In response to the FAA's October 1, 
    1998, letter (discussed previously), British Aerospace submitted a 
    summary of the handling and performance flight test results that were 
    produced during the original flight in icing certification. This 
    summary was referenced in their response to the proposed rulemaking. 
    The commenter volunteered to provide any reports referenced in the 
    summary. The FAA requested and subsequently received copies of the full 
    handling and performance flight test results for certification in the 
    icing conditions specified in Appendix C of part 25 of the Federal 
    Aviation Regulations (14 CFR 25), and the JAA draft issue of 
    AMJ25.1419, which was used as guidance for compliance with JAR/FAR 
    25.1419. The FAA reviewed these reports and guidance material and finds 
    that the Jetstream 4101 airplane was adequately tested with a variety 
    of natural ice accretions on both the protected and unprotected 
    surfaces. Handling and performance flight test was accomplished for the 
    following: Normal Operation of the Deicing Boots, \1/2\-to \3/4\-inch 
    of ice on the protected wing leading edges and up to 3 inches of ice on 
    unprotected leading edges; Simulated Failure of the Deicing Boots, 
    approximately 1 to 1\1/2\ inches of ice on all leading edges; Ice 
    Accreted During the Take-off Phase, a thin rough layer of ice accreted 
    during the initial take-off phase to 400 feet, prior to operation of 
    deicing boots.
        These ice accretion depths were established to address the 
    following: Ice accreted during the rest-time of a deicing cycle, 
    delayed operation or failure of the system, and residual ice 
    accumulations. The flight testing examined stall speeds, stall warning 
    margins, stall characteristics, maneuver margins, longitudinal 
    controllability, flap configuration changes, ability to trim, 
    susceptibility to tailplane stall, and longitudinal, lateral, and 
    directional stability. The angles of attack for activation of the stall 
    warning system and stall identification system (i.e., stick shaker or 
    stick pusher) are reset to lower values (i.e., higher speeds) for 
    flight in icing and safe flight speeds (minimum operating speeds) 
    established accordingly. Affected AFM performance information was 
    derived for icing conditions based on the higher operating speeds, in 
    accordance with JAA draft AMJ25.1419.
        The Cessna and British Aerospace aircraft models discussed in this 
    comment have been tested and, where appropriate, changes have been made 
    to ensure the airplanes are safe for operations with ice accretions on 
    the protected surfaces. Without this type of testing and 
    substantiation, the FAA must conclude the aircraft affected by this 
    final rule may be subject to adverse aerodynamic effects due to ice 
    accretions on the protected surfaces prior to deicing boot operation. 
    Other manufacturers may also develop the necessary data to substantiate 
    that their airplanes are safe with these accretions and request 
    approval of an alternative method of compliance.
    
    7. Request To Differentiate Between ``Modern'' Boot Systems and 
    ``Older'' Boot Systems
    
        Several commenters request that the difference between the 
    ``older'' boot systems and the ``modern'' boot systems be explained. 
    These commenters express concern that although both systems are 
    addressed in the proposal, there may not be a sound technical reason to 
    apply the requirements of the proposal to both types of boot systems.
        The FAA acknowledges that definitions of ``older'' and ``modern'' 
    pneumatic boot systems should be provided. Therefore, for the purposes 
    of this AD, ``modern'' pneumatic boot systems may be characterized by 
    short segmented, small diameter tubes, which are operated at relatively 
    high pressures [18-23 pounds per square inch (psi)] by excess bleed air 
    that is provided by turbine engines. ``Older'' pneumatic boot systems 
    may be characterized by long, uninterrupted, large diameter tubes, 
    which were operated at low pressures by engine driven pneumatic pumps 
    whose pressure varied with engine revolutions per minute (rpm). This 
    low pressure coupled with long and large diameter tubes caused early 
    de-ice systems to have very lengthy inflation and deflation cycles and 
    dwell times. (Dwell time is the period of time that the boot remains 
    fully expanded following the completion of the inflation cycle until 
    the beginning of the deflation cycle.)
    
    8. Request To Withdraw the Proposal For Airplanes with ``Older'' Boots
    
        Two commenters request that the proposed rules applying to 
    Gulfstream
    
    [[Page 63565]]
    
    Model G-159 series airplanes and McDonnell Douglas Model DC-3 and DC-4 
    series airplanes be withdrawn. Both commenters state that those 
    airplane models do not meet the common definition of the word 
    ``modern.'' (See Comment #7 of this final rule for a definition of 
    ``modern'' as used in this AD.) One commenter states that the current 
    AFM specifically directs the flightcrew to wait for \1/4\-inch of ice 
    before activating the boots. Further, the commenter asserts that the 
    current procedure was developed during certification and is the basis 
    for the airplane's approval for flight into known icing. Additionally, 
    the commenters assert that the in-service safety records for more than 
    40 years indicates that the existing procedures are appropriate for 
    these airplanes. The commenter concludes that the proposed AFM revision 
    is in direct opposition to the certification findings.
        The FAA acknowledges that early activation of the ``older'' 
    pneumatic deicing boots may create the hazard of ice bridging on the 
    ``older'' systems. As discussed in Comment #2 previously, ``older'' 
    boots may be susceptible to ice bridging, and the FAA concurs that 
    requiring the activation of the boots at the first sign of icing may 
    actually introduce an unsafe condition on those airplanes. In order to 
    address this issue, the FAA is taking the following steps. First, to 
    accommodate certain airplane models of the fleet (i.e., Gulfstream 
    Model G-159 series airplanes and McDonnell Douglas Model DC-3 and DC-4 
    series airplanes) that may be equipped with the ``older'' pneumatic 
    deicing boot system, the FAA is considering the issuance of 
    supplemental NPRM's for those airplane models. The purpose of the 
    supplemental NPRM's would be to require an inspection to determine 
    which type of pneumatic deicing boots are installed on the airplanes, 
    and to require operation of the boots at the first sign of ice 
    accretion if the airplanes have been retrofitted with ``modern'' boots. 
    Second, for aircraft with ``older'' pneumatic boots installed, the FAA 
    will continue to investigate other solutions to the unsafe condition of 
    reduced handling qualities or controllability of the airplane due to 
    ice accumulations on the protected surfaces. If other solutions are 
    identified, the FAA may consider further rulemaking.
    
    9. Request To Revise AFM Change
    
        One commenter requests that the proposal to operate the boots at 
    the first sign of ice accretion be limited to the holding and approach 
    phases of flight. The commenter states that the Aviation Rulemaking 
    Advisory Committee (ARAC) Ice Protection Harmonization Working Group 
    (IPHWG) completed a comprehensive review of past icing accidents/
    incidents. The IPHWG concluded that the only phases of flight that 
    demonstrate a safety concern are holding patterns and various approach 
    segments; since these operations are conducted at lower airplane speed, 
    instability could occur as a result of ice accumulations on the wing 
    and tail surfaces.
        The FAA does not concur that the AFM revision should be limited to 
    the holding and approach phases of flight. The FAA acknowledges that 
    the IPHWG is working on a proposed operations rule that may only be 
    applicable during holding and approach phases of flight. However, the 
    IPHWG continues to work on the proposed rule and has not reached 
    technical agreement. Since discussions are ongoing, it would not be 
    appropriate to assume that the IPHWG positions as presented by the 
    commenter will necessarily be reflected in the actual published 
    proposal.
        Another commenter, an airplane manufacturer, stated that the AFM 
    for Model SF340A/SAAB340B/SAAB 2000 series airplanes currently does not 
    limit the operation of the deicing boots during specific phases of 
    flight. The commenter requests that the AFM change required by 
    paragraph (a) of the proposal be revised to limit the applicable phases 
    of flight where the AFM specifies that deicing boots should not be 
    used. Specifically, the commenter requests that the language be revised 
    to read ``Deicing boots must not be used during take-off and landing.''
        The FAA partially concurs, and acknowledges that clarification is 
    necessary. It was the FAA's intent that the boots do not have to be 
    operated at the first sign of ice accretion during those phases of 
    flight if there are existing procedures in the AFM that prohibit the 
    operation of the boots during specific phases of flight. However, the 
    boots must always be operated at the first sign of ice accretion if, in 
    accordance with the AFM, it is acceptable to operate the boots during 
    all phases of flight. Therefore, the FAA has revised paragraph (a) of 
    the final rule to state, ``Except if the AFM otherwise specifies that 
    deicing boots should not be used for certain phases of flight (e.g., 
    take-off, final approach, and landing), compliance with the following 
    is required.''
        With respect to the request to specify that the deicing boots must 
    not be used during take-off and landing, it would be desirable to 
    customize the AFM limitation for specific models of airplanes. This 
    would allow the AFM to clearly indicate to the flightcrew when the 
    deicing boots should be deactivated, rather than necessitating that the 
    flightcrew first determine if there are other portions of the AFM that 
    indicate that the deicing boots should not be used during specific 
    phases of flight. Therefore, the FAA encourages requests for approval 
    of alternative methods of compliance to customize the AFM limitation to 
    the specific airplane model.
        However, the FAA does not concur with the request to revise the 
    final rule that applies to Saab Model SAAB SF340A/SAAB340B/SAAB 2000 
    series airplanes since the existing Saab AFM does not indicate that the 
    deicing boots should not be used during take-off and landing. If the 
    commenter has data to indicate that the deicing boots should not be 
    used during those phases of flight, the commenter should take action to 
    revise the AFM and request approval of an alternative method of 
    compliance.
    
    10. Request To Revise Instructions on When To Deactivate the Boot 
    System
    
        One commenter requests that two changes be made to paragraph (a) of 
    the proposal. The first change would be to specify that the wing and 
    tail leading edge pneumatic deicing boot system may be deactivated only 
    after completion of an entire deicing cycle after leaving icing 
    conditions. The commenter also requests that the proposal be revised to 
    add related procedures for operating speeds, and that related 
    procedures for operation of the autopilot (if any) be discontinued only 
    after the airplane is determined to be clear of ice. The commenter 
    states that natural ice shedding, melting, or sublimation from the 
    protected areas will mostly eliminate residual ice.
        Regarding the commenter's first request, the FAA concurs. For the 
    reasons the commenter stated, the FAA has revised paragraph (a) of the 
    final rule from: ``The wing and tail leading edge pneumatic deicing 
    boot system may be deactivated only after leaving icing conditions and 
    after the airplane is determined to be clear of ice;'' to ``The wing 
    and tail leading edge pneumatic deicing boot system may be deactivated 
    only after completion of an entire deicing cycle after leaving icing 
    conditions.''
        Regarding the commenter's second request, the FAA considers that, 
    since the suggested change would alter the actions currently required 
    by this AD, additional rulemaking would be required. The FAA finds that 
    to delay this action would be inappropriate in light of the identified 
    unsafe condition.
    
    [[Page 63566]]
    
    However, the FAA is considering additional rulemaking concerning 
    operating speeds during icing conditions.
    
    11. Requests the FAA Consider the Pilot Workload
    
        One commenter states that the proposal would require the pilot to 
    monitor ice formation and to activate the deicing system almost 
    constantly. Another commenter suggests that such increase of the 
    pilot's workload could, of itself, cause an indirect adverse impact on 
    operational safety. The commenters request that the FAA consider the 
    additional pilot workload if the proposal is adopted.
        The FAA has previously considered the effects on the pilot of 
    requiring that the deicing boots be activated at the first sign of ice 
    formation anywhere on the airplane, or upon annunciation from an ice 
    detector system. The FAA acknowledges that current procedures 
    recommending activation of the deicing boots at a specific ice 
    accretion thickness require the flightcrew to closely monitor the ice 
    accretion. However, since a number of airplanes affected by this AD are 
    equipped with deicing boot systems with automatic operating modes, 
    operating the deicing boots at the first sign of ice accretion in an 
    appropriate automatic mode will favorably influence flightcrew 
    workload. For airplanes not equipped with automatic deicing boot 
    operating modes, periodic operation of the boots can be accomplished 
    based on time intervals consistent with existing icing conditions. The 
    FAA considers that periodic operation of the boots is not a greater 
    workload burden than closely monitoring the ice accretion thickness.
        For the reasons stated, the FAA has determined that it is 
    unnecessary to revise the final rule.
    
    12. Request To Withdraw the Proposal: Provide Training Instead
    
        Several commenters request that the FAA withdraw the proposal and 
    ensure that appropriate information and training regarding the use of 
    the boots is provided to pilots. The commenters also suggest that a 
    testing program be accomplished by industry. The commenters assert that 
    such training, along with an analysis of the testing program, would 
    eliminate the need for requiring that the deicing boots be activated in 
    accordance with the proposal. One commenter also adds that the AFM 
    should only be changed to add a warning that delayed activation of the 
    pneumatic boot system may be unsafe. Another commenter adds that the 
    language of the proposed AFM revision may conflict with current AFM 
    procedures and could confuse operators.
        The FAA does not concur that substituting mandatory training for 
    issuance of an AD is appropriate in this case. The FAA acknowledges 
    that, in addition to the issuance of an AD, information specified in 
    the revision to the AFM should be integrated into the pilot training 
    syllabus. However, the development and use of advisory materials and 
    training alone are not adequate to address the unsafe condition. The 
    only method of ensuring that certain information is available to, and 
    mandatory for, the pilot is through incorporation of the information 
    into the Limitations Section of the AFM. The appropriate vehicle for 
    requiring such revision of the AFM is issuance of an AD. No change is 
    necessary to the final rule in this regard.
    
    13. Request To Consider Procedures Already in Normal Procedures Section
    
        One commenter requests concurrence that procedures existing in the 
    Normal Procedures section of the AFM be considered as compliant with 
    the requirements of the proposed AD.
        The FAA does not concur that procedures specified in the Normal 
    Procedures section of the AFM are an equivalent method of compliance 
    with the AD. The FAA considers that, since the Limitations section of 
    the AFM is the only section of the AFM that is mandatory [Sec. 91.9 of 
    the Federal Aviation Regulations (14 CFR 91.9)], the subject required 
    revision to the AFM must be included in the Limitations section. No 
    change is necessary to the final rule in this regard.
    
    14. Request To Limit the AD to Only Those Operations Conducive to Icing
    
        Two commenters request that the AFM limitation specified in 
    paragraph (a) of the proposal be limited to those conditions where 
    operations conducive to icing exist. The commenters provide examples of 
    conditions where operations not conducive to icing may exist such as 
    Hawaii; the Caribbean; short, low altitude flights in the summer; etc. 
    One of these commenters states that, ``under the proposal, dispatch 
    with an inoperative boot would be considered prohibited even though the 
    deicing would never be needed.''
        The FAA does not concur that revision of the AD is necessary in 
    this regard. Paragraph (a) of the AD specifically states that wing and 
    tail leading edge pneumatic deicing boot systems must be activated at 
    the first sign of ice formation anywhere on the aircraft, or upon 
    annunciation from an ice detector system, whichever occurs first. The 
    FAA considers that, regardless of what geographic area an airplane may 
    be flying in or what season of the year it may be, the boot system must 
    be activated if those specified conditions occur.
        Regarding dispatch with an inoperative boot, current Master Minimum 
    Equipment List (MMEL) procedures prohibit dispatch of the airplane into 
    known or forecast icing conditions if the deicing boots are 
    inoperative. In the event that icing conditions are inadvertently 
    encountered during operation in accordance with MMEL provisions, 
    procedures exist to instruct the flightcrew to exit the icing 
    conditions immediately. The FAA considers that those existing 
    procedures will prevent conflict between the requirements of this AD 
    and perceived problems regarding dispatch with inoperative boots. No 
    change is necessary to the final rule in this regard.
    
    15. Request To Consider Differences in Airplanes Systems
    
        One commenter requests that the AFM revision specified in paragraph 
    (a) of the proposed rule be revised for those airplanes that are 
    equipped with icing detection systems. Such a revision should read 
    ``activate the wing and tail leading edge pneumatic deicing boot system 
    upon annunciation from an ice detector,'' rather than ``at the first 
    sign of ice anywhere on the aircraft, or upon annunciation from an ice 
    detector system, whichever occurs first.'' The commenter states that, 
    since the sensor for the ice detection system detects ice buildup at 
    the boot, it would make sense for airplanes that have an ice detection 
    system to activate the boot only when ice is detected at the boot by 
    the ice detection system. The commenter further points out that 
    activating the boot when ice is not forming on the boot will not remove 
    the ice formations elsewhere on the airplane, but will simply 
    deteriorate the condition of the boot and provide no safety benefit. 
    Additionally, the commenter adds that if the ice detection system were 
    inoperative for dispatch, it would be appropriate as a Master Minimum 
    Equipment List (MMEL) condition to activate the boot at the first sign 
    of icing.
        The FAA does not concur that the final rule should be revised to 
    address procedures specifically for airplanes equipped with icing 
    detection systems. Visual detection of icing by the flightcrew has been 
    certificated as the primary means of ice detection. Therefore, the FAA 
    has determined that,
    
    [[Page 63567]]
    
    although ice detection systems may alert the flightcrew to the presence 
    of icing, the flightcrew is still responsible to monitor the airframe 
    for ice accretion. No change is necessary to the final rule in this 
    regard. However, in the event a turbopropeller airplane equipped with 
    pneumatic deicing boots was also equipped with an ice detection system 
    that was approved as the primary ice detection system, the operator 
    could request an alternative method of compliance in accordance with 
    paragraph (b) of the final rule.
    
    16. Request To Require Additional Operational Procedures
    
        Several commenters propose that the FAA consider that minimum speed 
    restrictions be used in conjunction with the early activation of the 
    deicing boots. Some of the commenters specify that these speed 
    additions be applied during landing approach. One of the commenters 
    expresses concern that various reports and research indicate that 
    increasing the angle-of attack with even a small ice formation on the 
    airfoil can cause large increases in drag and loss of lift. The 
    commenter contends that control of the angle-of-attack is critical in 
    maintaining airfoil performance, and concludes that additional 
    operational procedures must be added.
        The FAA concurs that certain operational procedures may be 
    beneficial when used with early activation of the deicing boots. As a 
    complement to this AD, the FAA is considering rulemaking regarding 
    minimum speeds in icing conditions. As mentioned previously, the FAA 
    encourages manufacturers to present data via a request for approval of 
    an alternative method of compliance to substantiate that their 
    airplanes are either capable of flying safely with ice that accumulates 
    prior to boot activation, or that they are not capable of flying safely 
    but there are other means to address the unsafe condition. For example, 
    in the case of Cessna Model 560 series airplanes, the stall warning 
    margins were modified to ensure the airplane could safely operate with 
    ice accretions on the protected surfaces. No change is necessary to the 
    final rule in this regard.
    
    17. Request To Mandate Installation of an Ice Detection System
    
        One commenter suggests that a required installation of a reliable 
    ice detection system might alleviate the difficulties associated with 
    flightcrew recognition of airfoil ice accretions. The commenter notes 
    that, historically, the problem of ice detection has been the ability 
    of the flightcrew to either identify that the airfoil has ice adhering 
    to it or accurately determine that a certain thickness of ice exists on 
    the airfoil prior to activation of the boot system.
        The FAA concurs that installation of a reliable ice detection 
    system would alleviate the difficulties associated with flightcrew 
    recognition of airfoil ice accretions. This issue is being addressed by 
    an ARAC working group. Upon receipt of a recommendation from ARAC, the 
    FAA may consider further rulemaking. In the interim, the FAA is issuing 
    these airworthiness directives to impose a relatively simple deicing 
    boot operational change to address the reduced handling qualities or 
    controllability of the airplane due to ice accumulations on the 
    protected surfaces. No change is necessary to the final rule in this 
    regard.
    
    18. Request To Require Action To Reduce Adhesion Characteristics
    
        One commenter requests that action be taken to minimize or reduce 
    the ice adhesion characteristics of boot material. The commenter 
    asserts that one reason flightcrews may be seeing large amounts of 
    residual ice may be that, as the boot ages, the tendency for residual 
    ice to stick to the boot surface may increase if the adhesion qualities 
    of the boot materials are not properly maintained. In addition, the 
    commenter suggests that the use of certain compounds (e.g., ICEX, an 
    ice-phobic chemical spray) can reduce ice adhesion by substantial 
    margins.
        The FAA does not concur with the commenter's request to require 
    rulemaking to reduce adhesion characteristics of boot material. The FAA 
    considers that normal wear and tear on the deicing boot materials is to 
    be expected, and the adhesion characteristics of the boot increases as 
    the boot surface degrades over time. Operators have the responsibility 
    to monitor the performance of the deicing boots installed on their 
    airplanes, and to perform maintenance as required.
        The FAA acknowledges that use of certain ice-phobic chemicals may 
    provide an additional safety benefit. However, a variety of factors 
    (e.g., normal wear and tear, ``patching,'' and oxidation of boot 
    material) exist in varying degrees on individual airplanes. As a 
    result, the optimum frequency of application will vary during the life 
    of the boot. The FAA has received no quantitative data to demonstrate 
    the adequacy of particular amounts of ice phobic chemical sprays or to 
    provide adequate intervals of application. Therefore, the FAA cannot 
    establish an appropriate application interval at this time. However, if 
    additional data becomes available, the FAA may consider further 
    rulemaking.
    
    19. Request To Consider the Associated Maintenance Procedures and 
    Increased Costs
    
        Several commenters point out that certain maintenance requirements 
    should be considered if the proposed AFM revision is required. One 
    commenter notes that a detailed review of maintenance procedures should 
    be conducted regarding the deicing boots to ensure that, as the boot 
    ages, the boot system continues to effectively shed ice.
        Several commenters request that the FAA also consider the 
    additional costs that the proposed AFM revision would require. One 
    commenter states that the added cycling of the boots will require 
    additional maintenance. The commenters express concern that the boots 
    will wear out faster, need to be replaced at an accelerated rate, and 
    thereby add additional costs.
        The FAA acknowledges the concerns of these commenters. The FAA 
    considered the deicing boot fatigue issues surrounding the proposed AD, 
    such as the reliability of the deicing boots. Reliability of the 
    deicing boots is affected by several factors, including: maintenance 
    practices; abrasion during dry air, rain, hail, snow, and icing 
    operations; oxidation; and, fatigue resulting from boot cycling.
        However, none of the commenters provided cost estimates for any of 
    the maintenance costs or replacement costs. The FAA did receive certain 
    other information from a large operator of two airplane models that 
    will be affected by this final rule. (One of the airplane models in 
    that fleet currently observes the early-activation procedures required 
    by this final rule and the other airplane model does not.) The operator 
    stated that the largest contributor to periodic replacement of deicing 
    boots on the fleet was erosion of the boot surface, rather than fatigue 
    that would be caused by activation of deicing boots at the first sign 
    of ice accretion.
        The FAA recognizes that, in accomplishing the requirements of any 
    AD, operators may incur ``incidental'' costs in addition to the 
    ``direct'' costs that are reflected in the cost analysis presented in 
    the AD preamble. However, the cost analysis in AD rulemaking actions 
    typically does not include incidental costs. In the case of this AD, 
    for example, the requirements are to revise the AFM to include certain 
    information. How operators actually ``implement'' that information 
    thereafter (once it is placed in the AFM) may vary
    
    [[Page 63568]]
    
    greatly among them: for some operators, implementation may necessitate 
    extensive retraining among their flightcrews; for others, 
    implementation may merely be considered a typical part of the routine, 
    continuous training of their flightcrews. In light of this, it would be 
    nearly impossible for the FAA to calculate accurately or to reflect all 
    costs associated with the AFM revision required by this AD. The FAA has 
    determined that direct and incidental costs are still outweighed by the 
    safety benefits of the AD.
    
    Conclusion
    
        After careful review of the available data, including the comments 
    noted above, the FAA has determined that air safety and the public 
    interest require the adoption of the rule with the changes described 
    previously. The FAA has determined that these changes will neither 
    increase the economic burden on any operator nor increase the scope of 
    the AD.
    
    Cost Impact
    
        There are approximately 283 Model NA-265-40, NA-265-60, NA-70, and, 
    NA-265-80 series airplanes of the affected design in the worldwide 
    fleet. The FAA estimates that 176 airplanes of U.S. registry will be 
    affected by this AD.
        It will take approximately 1 work hour per airplane to accomplish 
    the required AFM revisions, at the average labor rate of $60 per work 
    hour. Based on these figures, the cost impact of the AD on U.S. 
    operators is estimated to be $10,560, or $60 per airplane.
        The cost impact figure discussed above is based on assumptions that 
    no operator has yet accomplished any of the requirements of this AD 
    action, and that no operator would accomplish those actions in the 
    future if this AD were not adopted.
    
    Regulatory Impact
    
        The regulations adopted herein will not have substantial direct 
    effects on the States, on the relationship between the national 
    government and the States, or on the distribution of power and 
    responsibilities among the various levels of government. Therefore, in 
    accordance with Executive Order 12612, it is determined that this final 
    rule does not have sufficient federalism implications to warrant the 
    preparation of a Federalism Assessment.
        For the reasons discussed above, I certify that this action (1) is 
    not a ``significant regulatory action'' under Executive Order 12866; 
    (2) is not a ``significant rule'' under DOT Regulatory Policies and 
    Procedures (44 FR 11034, February 26, 1979); and (3) will not have a 
    significant economic impact, positive or negative, on a substantial 
    number of small entities under the criteria of the Regulatory 
    Flexibility Act. A final evaluation has been prepared for this action 
    and it is contained in the Rules Docket. A copy of it may be obtained 
    from the Rules Docket at the location provided under the caption 
    ADDRESSES.
    
    List of Subjects in 14 CFR Part 39
    
        Air transportation, Aircraft, Aviation safety, Safety.
    
    Adoption of the Amendment
    
        Accordingly, pursuant to the authority delegated to me by the 
    Administrator, the Federal Aviation Administration amends part 39 of 
    the Federal Aviation Regulations (14 CFR part 39) as follows:
    
    PART 39--AIRWORTHINESS DIRECTIVES
    
        1. The authority citation for part 39 continues to read as follows:
    
        Authority: 49 U.S.C. 106(g), 40113, 44701.
    
    
    Sec. 39.13  [Amended]
    
        2. Section 39.13 is amended by adding the following new 
    airworthiness directive:
    
    99-19-03  Sabreliner Corporation: Amendment 39-11292. Docket 99-NM-
    137-AD.
    
        Applicability: Model NA-265-40, NA-265-60, NA-70, and NA-265-80 
    series airplanes equipped with pneumatic deicing boots, certificated 
    in any category.
        Compliance: Required as indicated, unless accomplished 
    previously.
        To ensure that flightcrews activate the wing and tail pneumatic 
    deicing boots at the first signs of ice accumulation on the 
    airplane, accomplish the following:
        (a) Within 10 days after the effective date of this AD: Revise 
    the Limitations Section of the FAA-approved Airplane Flight Manual 
    (AFM) to include the following requirements for activation of the 
    ice protection systems. This may be accomplished by inserting a copy 
    of this AD in the AFM.
        `` Except if the AFM otherwise specifies that deicing 
    boots should not be used for certain phases of flight (e.g., take-
    off, final approach, and landing), compliance with the following is 
    required.
         Wing and Tail Leading Edge Pneumatic Deicing Boot 
    System, if installed, must be activated:
    
    --At the first sign of ice formation anywhere on the aircraft, or 
    upon annunciation from an ice detector system, whichever occurs 
    first; and
    --The system must either be continued to be operated in the 
    automatic cycling mode, if available; or the system must be manually 
    cycled as needed to minimize the ice accretions on the airframe.
    
         ``The wing and tail leading edge pneumatic deicing boot 
    system may be deactivated only after completion of an entire deicing 
    cycle after leaving icing conditions.''
        (b) An alternative method of compliance or adjustment of the 
    compliance time that provides an acceptable level of safety may be 
    used if approved by the Manager, Wichita Aircraft Certification 
    Office, FAA, Small Airplane Directorate. The request shall be 
    forwarded through an appropriate FAA Operations Inspector, who may 
    add comments and then send it to the Manager, Wichita ACO.
    
        Note 1: Information concerning the existence of approved 
    alternative methods of compliance with this AD, if any, may be 
    obtained from the Wichita ACO.
    
        (c) Special flight permits may be issued in accordance with 
    Secs. 21.197 and 21.199 of the Federal Aviation Regulations (14 CFR 
    21.197 and 21.199) to operate the airplane to a location where the 
    requirements of this AD can be accomplished.
        (d) This amendment becomes effective on December 27, 1999.
    
        Issued in Renton, Washington, on November 10, 1999.
    John J. Hickey,
    Manager, Transport Airplane Directorate, Aircraft Certification 
    Service.
    [FR Doc. 99-30131 Filed 11-19-99; 8:45 am]
    BILLING CODE 4910-13-U
    
    
    

Document Information

Effective Date:
12/27/1999
Published:
11/22/1999
Department:
Federal Aviation Administration
Entry Type:
Rule
Action:
Final rule.
Document Number:
99-30131
Dates:
December 27, 1999.
Pages:
63561-63568 (8 pages)
Docket Numbers:
Docket No. 99-NM-137-AD, Amendment 39-11292, AD 99-19-03
RINs:
2120-AA64: Airworthiness Directives
RIN Links:
https://www.federalregister.gov/regulations/2120-AA64/airworthiness-directives
PDF File:
99-30131.pdf
CFR: (1)
14 CFR 39.13