2022-06178. Special Conditions: Dassault Aviation Model Falcon 6X Airplane; Interaction of Systems and Structures  

  • Start Preamble

    AGENCY:

    Federal Aviation Administration (FAA), DOT.

    ACTION:

    Final special conditions; request for comments.

    SUMMARY:

    These special conditions are issued for the Dassault Aviation (Dassault) Model Falcon 6X airplane. This airplane will have a novel or unusual design feature when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. This design feature is installed systems that, directly or as a result of failure or malfunction, affect airplane structural performance. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

    DATES:

    This action is effective on Dassault on March 24, 2022. Send comments on or before May 9, 2022.

    ADDRESSES:

    Send comments identified by Docket No. FAA-2021-0630 using any of the following methods:

    Federal eRegulations Portal: Go to http://www.regulations.gov/​ and follow the online instructions for sending your comments electronically.

    Mail: Send comments to Docket Operations, M-30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE, Room W12-140, West Building Ground Floor, Washington, DC 20590-0001.

    Hand Delivery or Courier: Take comments to Docket Operations in Room W12-140 of the West Building Ground Floor at 1200 New Jersey Avenue SE, Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

    Fax: Fax comments to Docket Operations at 202-493-2251.

    Privacy: Except for Confidential Business Information (CBI) as described in the following paragraph, and other information as described in 14 CFR 11.35, the FAA will post all comments received without change to http://www.regulations.gov/​, including any personal information you provide. The FAA will also post a report summarizing each substantive verbal contact received about these special conditions.

    Confidential Business Information: Confidential Business Information (CBI) is commercial or financial information that is both customarily and actually treated as private by its owner. Under the Freedom of Information Act (FOIA) (5 U.S.C. 552), CBI is exempt from public disclosure. If your comments responsive to these special conditions contain commercial or financial information that is customarily treated as private, that you actually treat as private, and that is relevant or responsive to these special conditions, it is important that you clearly designate the submitted comments as CBI. Please mark each page of your submission containing CBI as “PROPIN.” The FAA Start Printed Page 16627 will treat such marked submissions as confidential under the FOIA, and the indicated comments will not be placed in the public docket of these special conditions. Send submissions containing CBI to the Information Contact below. Comments the FAA receives, which are not specifically designated as CBI, will be placed in the public docket for these special conditions.

    Docket: Background documents or comments received may be read at http://www.regulations.gov/​ at any time. Follow the online instructions for accessing the docket or go to Docket Operations in Room W12-140 of the West Building Ground Floor at 1200 New Jersey Avenue SE, Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

    Start Further Info

    FOR FURTHER INFORMATION CONTACT:

    Todd Martin, Materials and Structural Properties Section, AIR-621, Technical Innovation Policy Branch, Policy and Innovation Division, Aircraft Certification Service, Federal Aviation Administration, 2200 South 216th Street, Des Moines, Washington 98198; telephone and fax 206-231-3210; email todd.martin@faa.gov.

    End Further Info End Preamble Start Supplemental Information

    SUPPLEMENTARY INFORMATION:

    The substance of these special conditions has been published in the Federal Register for public comment in several prior instances with no substantive comments received. Therefore, the FAA finds, pursuant to § 11.38(b), that new comments are unlikely, and notice and comment prior to this publication are unnecessary.

    Comments Invited

    The FAA invites interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data.

    The FAA will consider all comments received by the closing date for comments. The FAA may change these special conditions based on the comments received.

    Background

    On February 1, 2018, Dassault applied for a type certificate for their new Model Falcon 6X airplane. This airplane is a twin-engine business jet with seating for 19 passengers and a maximum takeoff weight of 77,460 pounds.

    Type Certification Basis

    Under the provisions of title 14, Code of Federal Regulations (14 CFR) 21.17, Dassault must show that the Model Falcon 6X airplane meets the applicable provisions of part 25, as amended by amendments 25-1 through 25-146.

    If the Administrator finds that the applicable airworthiness regulations ( e.g., 14 CFR part 25) do not contain adequate or appropriate safety standards for the Dassault Model Falcon 6X airplane because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16.

    Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same novel or unusual design feature, these special conditions would also apply to the other model under § 21.101.

    In addition to the applicable airworthiness regulations and special conditions, the Dassault Model Falcon 6X airplane must comply with the fuel-vent and exhaust-emission requirements of 14 CFR part 34, and the noise-certification requirements of 14 CFR part 36.

    The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38, and they become part of the type certification basis under § 21.17(a)(2).

    Novel or Unusual Design Features

    The Dassault Model Falcon 6X airplane will incorporate the following novel or unusual design feature:

    Installed systems that, directly or as a result of failure or malfunction, affect airplane structural performance.

    Discussion

    The Dassault Model Falcon 6X airplane is equipped with systems that directly, or as a result of failure or malfunction, affect its structural performance. These systems include the digital flight-control system, which includes maneuver-load and gust-load alleviation, and the fuel-management system. Current FAA regulations do not take into account the effects of systems on structural performance, including normal operation and failure conditions. Special conditions are needed to account for these features. These special conditions define criteria to be used in the assessment of the effects of these systems on structures. The general approach of accounting for the effect of system failures on structural performance is extended to include any system in which partial or complete failure, alone or in combination with other system partial or complete failures, would affect structural performance.

    These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

    These special conditions are similar to those previously applied to other airplane models.

    Applicability

    As discussed above, these special conditions are applicable to the Dassault Model Falcon 6X airplane. Should Dassault apply at a later date for a change to the type certificate to include another model incorporating the same novel or unusual design feature, these special conditions would apply to that model as well.

    Conclusion

    This action affects only a certain novel or unusual design feature on one model of airplane. It is not a rule of general applicability.

    Start List of Subjects

    List of Subjects in 14 CFR Part 25

    • Aircraft
    • Aviation safety
    • Reporting and recordkeeping requirements
    End List of Subjects

    Authority Citation

    The authority citation for these special conditions is as follows:

    Start Authority

    Authority: 49 U.S.C. 106(f), 106(g), 40113, 44701, 44702, 44704.

    End Authority

    The Special Conditions

    Accordingly, pursuant to the authority delegated to me by the Administrator, the following special conditions are issued as part of the type certification basis for the Dassault Model Falcon 6X airplane.

    For airplanes equipped with systems that affect structural performance, either directly or as a result of a failure or malfunction, the influence of these systems and their failure conditions must be taken into account when showing compliance with the requirements of 14 CFR part 25 subparts C and D.

    The following criteria must be used for showing compliance with these special conditions for airplanes equipped with flight-control systems, autopilots, stability-augmentation systems, load-alleviation systems, flutter-control systems, fuel-management systems, and other systems that either directly, or as a result of failure or malfunction, affect structural performance. If these special conditions are used for other systems, it may be necessary to adapt the criteria to the specific system.

    1. The criteria defined herein only address the direct structural Start Printed Page 16628 consequences of the system responses and performance. They cannot be considered in isolation, but should be included in the overall safety evaluation of the airplane. These criteria may, in some instances, duplicate standards already established for this evaluation. These criteria are only applicable to structure the failure of which could prevent continued safe flight and landing. Specific criteria that define acceptable limits on handling characteristics or stability requirements, when operating in the system degraded or inoperative mode, are not provided in these special conditions.

    2. Depending upon the specific characteristics of the airplane, additional studies that go beyond the criteria provided in these special conditions may be required to demonstrate the airplane's capability to meet other realistic conditions, such as alternative gust or maneuver descriptions for an airplane equipped with a load-alleviation system.

    3. The following definitions are applicable to these special conditions.

    a. Structural performance: Capability of the airplane to meet the structural requirements of 14 CFR part 25.

    b. Flight limitations: Limitations that can be applied to the airplane flight conditions following an in-flight occurrence, and that are included in the airplane flight manual ( e.g., speed limitations, avoidance of severe weather conditions, etc.).

    c. Operational limitations: Limitations, including flight limitations, that can be applied to the airplane operating conditions before dispatch ( e.g., fuel, payload and master minimum-equipment list limitations).

    d. Probabilistic terms: Terms such as probable, improbable, and extremely improbable, as used in these special conditions, are the same as those used in § 25.1309.

    e. Failure condition: This term is the same as that used in § 25.1309. However, these special conditions apply only to system-failure conditions that affect the structural performance of the airplane ( e.g., system-failure conditions that induce loads, change the response of the airplane to inputs such as gusts or pilot actions, or lower flutter margins).

    Effects of Systems on Structures

    The following criteria will be used in determining the influence of a system and its failure conditions on the airplane structure.

    1. System fully operative. With the system fully operative, the following apply:

    a. Limit loads must be derived in all normal operating configurations of the system from all the limit conditions specified in 14 CFR part 25, subpart C (or defined by special conditions or equivalent level of safety in lieu of those specified in subpart C), taking into account any special behavior of such a system or associated functions, or any effect on the structural performance of the airplane that may occur up to the limit loads. In particular, any significant nonlinearity (rate of displacement of control surface, thresholds, or any other system nonlinearities) must be accounted for in a realistic or conservative way when deriving limit loads from limit conditions.

    b. The airplane must meet the strength requirements of 14 CFR part 25 (static strength, residual strength), using the specified factors to derive ultimate loads from the limit loads defined above. The effect of nonlinearities must be investigated beyond limit conditions to ensure that the behavior of the system presents no anomaly compared to the behavior below limit conditions. However, conditions beyond limit conditions need not be considered when it can be shown that the airplane has design features that will not allow it to exceed those limit conditions.

    c. The airplane must meet the aeroelastic stability requirements of § 25.629.

    2. System in the failure condition. For any system-failure condition not shown to be extremely improbable, the following apply:

    a. At the time of occurrence. Starting from 1g level flight conditions, a realistic scenario, including pilot corrective actions, must be established to determine the loads occurring at the time of failure and immediately after the failure.

    i. For static-strength substantiation, these loads, multiplied by an appropriate factor of safety that is related to the probability of occurrence of the failure, are ultimate loads to be considered for design. The factor of safety is defined in Figure 1, below.

    ii. For residual-strength substantiation, the airplane must be able to withstand two-thirds of the ultimate loads defined in special condition 2.a.i above. For pressurized cabins, these loads must be combined with the normal operating differential pressure.

    iii. Freedom from aeroelastic instability must be shown up to the speeds defined in § 25.629(b)(2). For failure conditions that result in speeds beyond VC /MC, freedom from aeroelastic instability must be shown to increased speeds, so that the margins intended by § 25.629(b)(2) are maintained.

    iv. Failures of the system that result in forced structural vibrations (oscillatory failures) must not produce loads that could result in detrimental deformation of primary structure.

    b. For the continuation of the flight. For the airplane in the system-failed state, and considering any appropriate reconfiguration and flight limitations, the following apply: Start Printed Page 16629

    i. The loads derived from the following conditions (or used in lieu of the following conditions) at speeds up to VC /MC (or the speed limitation prescribed for the remainder of the flight) must be determined:

    1. The limit symmetrical maneuvering conditions specified in §§ 25.331 and 25.345.

    2. The limit gust and turbulence conditions specified in §§ 25.341 and 25.345.

    3. The limit rolling conditions specified in § 25.349, and the limit unsymmetrical conditions specified in §§ 25.367, and 25.427(b) and (c).

    4. The limit yaw-maneuvering conditions specified in § 25.351.

    5. The limit ground-loading conditions specified in §§ 25.473 and 25.491.

    ii. For static-strength substantiation, each part of the structure must be able to withstand the loads in special condition 2.b.i., multiplied by a factor of safety depending on the probability of being in this failure state. The factor of safety is defined in Figure 2, below.

    Q j = (Tj)(Pj)

    Where:

    Q j = Probability of being in failure mode j

    Tj = Average time spent in failure mode j (in hours)

    Pj = Probability of occurrence of failure mode j (per hour)

    Note:

    If Pj is greater than 103 per flight hour, then a 1.5 factor of safety must be applied to all limit load conditions specified in 14 CFR part 25, subpart C.

    iii. For residual-strength substantiation, the airplane must be able to withstand two-thirds of the ultimate loads defined in special condition 2.b.ii. For pressurized cabins, these loads must be combined with the normal operating differential pressure.

    iv. If the loads induced by the failure condition have a significant effect on fatigue or damage tolerance, then their effects must be taken into account.

    v. Freedom from aeroelastic instability must be shown up to a speed determined from Figure 3, below. Flutter clearance speeds V′ and V″ may be based on the speed limitation specified for the remainder of the flight using the margins defined by § 25.629(b).

    V′ = Clearance speed as defined by § 25.629(b)(2).

    V″ = Clearance speed as defined by § 25.629(b)(1).

    Q j = (Tj)(Pj)

    where:

    Q j = Probability of being in failure mode j

    Tj = Average time spent in failure mode j (in hours)

    Pj = Probability of occurrence of failure mode j (per hour)

    Note:

    If Pj is greater than 103 per flight hour, then the flutter clearance speed must not be less than V″.

    vi. Freedom from aeroelastic instability must also be shown up to V′ in Figure 3, above, for any probable system-failure condition, combined with any damage required or selected for investigation by § 25.571(b).

    c. Consideration of certain failure conditions may be required by other sections of 14 CFR part 25 regardless of calculated system reliability. Where analysis shows the probability of these failure conditions to be less than 109 per flight hour, criteria other than those specified in this paragraph may be used for structural substantiation to show continued safe flight and landing.

    3. Failure indications. For system-failure detection and indication, the following apply:

    a. The system must be checked for failure conditions, not extremely Start Printed Page 16630 improbable, that degrade the structural capability below the level required by part 25, or that significantly reduce the reliability of the remaining system. As far as reasonably practicable, the flightcrew must be made aware of these failures before flight. Certain elements of the control system, such as mechanical and hydraulic components, may use special periodic inspections, and electronic components may use daily checks, in lieu of detection and indication systems, to achieve the objective of this requirement. These certification-maintenance requirements must be limited to components that are not readily detectable by normal detection-and-indication systems, and where service history shows that inspections will provide an adequate level of safety.

    b. The existence of any failure condition, not extremely improbable, during flight, that could significantly affect the structural capability of the airplane, and for which the associated reduction in airworthiness can be minimized by suitable flight limitations, must be signaled to the flightcrew. For example, failure conditions that result in a factor of safety between the airplane strength and the loads of part 25, subpart C, below 1.25, or flutter margins below V”, must be signaled to the crew during flight.

    4. Dispatch with known failure conditions. If the airplane is to be dispatched in a known system-failure condition that affects structural performance, or that affects the reliability of the remaining system to maintain structural performance, then the provisions of these special conditions must be met, including the provisions of special condition 1, “System Fully Operative” for the dispatched condition, and special condition 2, “System in the Failure Condition” for subsequent failures. Expected operational limitations may be taken into account in establishing Pj as the probability of failure occurrence for determining the safety margin in Figure 1. Flight limitations and expected operational limitations may be taken into account in establishing Qj as the combined probability of being in the dispatched failure condition and the subsequent failure condition for the safety margins in Figures 2 and 3. These limitations must be such that the probability of being in this combined failure state, and then subsequently encountering limit load conditions, is extremely improbable. No reduction in these safety margins is allowed if the subsequent system-failure rate is greater than 103 per flight hour.

    Start Signature

    Issued in Kansas City, Missouri, on March 18, 2022.

    Patrick R. Mullen,

    Manager, Technical Innovation Policy Branch, Policy and Innovation Division, Aircraft Certification Service.

    End Signature End Supplemental Information

    [FR Doc. 2022-06178 Filed 3-23-22; 8:45 am]

    BILLING CODE 4910-13-P

Document Information

Effective Date:
3/24/2022
Published:
03/24/2022
Department:
Federal Aviation Administration
Entry Type:
Rule
Action:
Final special conditions; request for comments.
Document Number:
2022-06178
Dates:
This action is effective on Dassault on March 24, 2022. Send comments on or before May 9, 2022.
Pages:
16626-16630 (5 pages)
Docket Numbers:
Docket No. FAA-FAA-2021-0630, Special Conditions No. 25-801-SC
Topics:
Aircraft, Aviation safety, Reporting and recordkeeping requirements
PDF File:
2022-06178.pdf
Supporting Documents:
» Special Conditions: Dassault Aviation Model Falcon 6X Airplane; Interaction of Systems and Structures
CFR: (1)
14 CFR 25